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Abstract 
 
 

THE REGULATION OF TONB-DEPENDENT TRANSPORTERS IN NEISSERIA 
GONORRHOEAE 

 
By Aimee M Hollander 

 
A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2011 
 
 

Major Director: Cynthia Nau Cornelissen, Ph.D. 
Professor, Department of Microbiology and Immunology 

 
 

Neisseria gonorrhoeae is an obligate human pathogen that causes the common sexually- 

transmitted infection, gonorrhea. Gonococcal infections cause significant morbidity, 

particularly among women, as the organism ascends to the upper reproductive tract, 

resulting in pelvic inflammatory disease, ectopic pregnancy and infertility. Antibiotic 

resistance rates have risen dramatically, leading to severe restriction of treatment options 

for gonococcal disease. Gonococcal infections do not elicit protective immunity nor is 

there an effective vaccine to prevent the disease. Thus, further characterization of 

expression, function and regulation of surface antigens could lead to better treatment and 

prevention modalities in the future.  N. gonorrhoeae express a repertoire of TonB-

dependent transporters for the acquisition of iron.  All of these transporters are under the 

transcriptional regulation of Fur.  We investigated putative intracellular iron sources 

utilized by gonococci and the role that the TonB-dependent transporter, TdfF, played in 

this acquisition.  We determined that ascorbate which could prevent ferritin degradation 

or withhold iron from gonococci, inhibited intracellular survival.  The utilization of iron 
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from the iron binding moiety 2, 5-DHBA of the putative mammalian siderophore was 

also examined. In this study we continued to investigate the regulation of TdfF and 

further investigate potential host-specific inducing molecules for TdfF expression.  We 

investigated the regulation of tdfF expression and the role of MpeR, an AraC-like 

regulator, in tdfF expression. We determined that MpeR, interacted specifically with the 

DNA sequence upstream of fetA and activated FetA expression.  We confirmed that the 

outer membrane transporter, FetA, allows gonococcal strain FA1090 to utilize the 

xenosiderophore, ferric-enterobactin, as an iron source. However, we further 

demonstrated that FetA has an extended range of substrates that encompasses other 

catecholate xenosiderophores, including ferric-salmochelin and the dimers and trimers of 

dihydroxybenzoylserine. We demonstrated that fetA is encoded as part of an iron-

repressed, MpeR-activated operon, which putatively encodes other iron transport 

proteins. These iron transport proteins also play a role in xenosiderophore acquisition.  

We also identified genetic differences that may explain why some gonococcal strains are 

capable of xenosiderophore internalization in a TonB-dependent pathway and other 

strains are restricted to TonB-independent pathways.   

 Interestingly, the chromosomal locus that codes for mpeR and tdfF is pathogen 

specific. Thus understanding more about the TonB-dependent transporter and AraC-like 

regulator may further elucidate the pathogenicity of N gonorrhoeae.  
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CHAPTER 1 INTRODUCTION  

I. Neisseria 

The family Neisseriaceae contains the genera Neisseria, Moraxella, 

Acinetobacter, and Kingella which differ from each other by cell morphology (155).  The 

members of the genus Neisseria are Gram-negative diplococci with adjacent flattened 

sides.   

Neisseria species are both pathogens and normal flora in humans. They are 

differentiated based on their varying abilities to produce acid, as well as their DNase and 

catalase activities. Species are also differentiated based on their ability produce acids 

from carbohydrates through oxidation (not through fermentation) and their ability to 

reduce nitrate and nitrite as well as oxidize fatty acids (133) (Table 1).    
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Table 1.  Biochemical Tests for the Identification of N. gonorrhoeae and Related Species 

Table adapted from Center of Disease Control and Prevention website.  
Abbreviations: G, glucose; M, maltose; S, sucrose; F, fructose; L, lactose; (+) most 
strains positive; (-) most strains negative. ++++ indicates strong positive; ++/+ indicates 
weak positive.  
 

 

Acid Production

+

+

-

-

-

Nitrate 
Reduction

S uperoxidePolysacc haride 
from Sucrose

LFSMGSpecies

+

+

-

-

-

+

+

++

+++

++++

-

-

+

-

-

+

+

+

+

-

N. mucosa

N. polysac charea

N. lac tamica

N.  meningitidis

N. gonorrhoeae

+++

--+

--+

--+

--+
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II. Pathogenic Neisseria Species  

Of all Neisseria species, only N. gonorrhoeae strains are always pathogenic 

whereas N. meningitidis are carried as normal flora of the nasopharynx. Under some 

circumstances N. meningitidis can become invasive, causing sporadic cases of meningitis 

and meningococcemia (155).  These microorganisms are closely related yet highly 

adapted to their respective host niches and cause entirely different clinical diseases. 

 

 

III. Neisseria meningitidis  

A. Epidemiology 

N. meningitidis colonizes the nasopharnyx mainly as a commensal and is carried 

by 5-10% of the healthy population in non-endemic times (269). Meningococci cause 

symptomatic disease if they disseminate from the nasopharnyx and cause 

meningococcemia or meningitis. Acquisition of N. meningitidis requires person-to-person 

transmission via direct contact or through dispersion of respiratory droplets from an 

infected individual to a susceptible individual. The frequency of meningococcal disease 

varies according to the demographic and geographical location of the population.  The 

rate of nasopharyngeal carriage of N. meningitidis is lowest in young children, and 

highest among adolescents and young adults (269).  Meningococcal disease in Europe 

and North America usually occurs as sporadic cases and the highest incidence rates are 

seen in children less than 5 years of age (46).  In North America, meningococcal disease 

occurs at a rate of 1 case per 100,000 persons per year in the USA. The majority of these 

cases occur in the winter season and in young children (223), with a case fatality rate of 
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approximately 10% (223). Cases can also occur as clusters and localized outbreaks. N. 

meningitidis is a major public health concern in areas where the bacteria are responsible 

for pandemics and country-wide epidemics.  Country-wide epidemics frequently occur in 

the Sub-Saharan Africa, which is known as the “meningitis belt” (46). 

B. Infection  

Meningococcal meningitis starts with the colonization of the nasopharnyx, 

followed by invasion and survival of bacteria in the bloodstream causing 

meningococcemia. Then the bacteria can cross the blood–brain barrier, causing infection 

in the central nervous system.  Symptomatic meningococcemia may present as fever 

lethargy, shock, coma, intravascular coagulation and skin rash (40, 140). Symptoms of 

meningococcal meningitis include high fever, headache and stiff neck, which occur 

several hours to two days after infection.  

C. Treatment 

The Centers for Disease Control and Prevention recommends that meningitis 

treatment begin as early as possible in the course of the disease. An initial treatment with 

antibiotics is recommend if bacterial meningitis is diagnosed (47). Appropriate antibiotic 

treatment for bacterial meningitis reduces the risk of mortality to below 15%, although 

the risk is higher among the elderly (47). About 11–19% of survivors have complications 

due to infection which include neurologic disability, limb loss, and hearing loss (250). 

There are two kinds of vaccines that protect against Neisseria meningitidis available in 

the United States: meningococcal polysaccharide vaccine (Menomune®), and 

meningococcal conjugate vaccine (Menactra® and Menveo®).  These vaccines protect 
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against meningococcal serogroups A, C, W135 and Y. There is currently no vaccine 

against meningococcal serogroup B.  

  

IV. Neisseria gonorrhoeae  

A. Epidemiology  

N. gonorrhoeae primarily infects the urogenital and anorectal mucosa following 

intimate contact.  Ejaculation does not have to occur for N. gonorrhoeae to be transmitted 

or acquired and it can be spread from mother to baby during delivery. N. gonorrhoeae 

causes the sexually transmitted infection gonorrhea which is responsible for an estimated 

62.3 million infections worldwide (306). Over 300,000 infections are reported in the 

United States per year and it is the second most common reportable infectious disease in 

the US (49).   

B. Infection  

In men, gonorrhea can cause a symptomatic or asymptomatic infection.  In 

symptomatic infections, symptoms arise 1-14 days after contact with an infected partner 

and include acute urethritis with purulent discharge and dysuria. Acute epdidymitis is the 

most common complication of untreated gonococcal infection in males; however, very 

rarely, disseminated gonococcal infection can occur.   

It is estimated that up to 80% of women infected with N. gonorrhoeae are 

asymptomatic or present with minor symptoms (190).  The primary site of infection is the 

endocervix and symptoms occur within the first 10 days of contact with an infected 

partner. Symptoms can include urethritis with increased vaginal discharge, or vaginal 

bleeding between periods.  The spread of the microorganism into the upper genital tract 
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can result in the development of complications from infection (99).  The ascending 

infection can lead to pelvic inflammatory disease which may cause ectopic pregnancy or 

infertility (203, 267). Symptoms of rectal infection in both men and women can present 

as asymptomatic or symptomatic infections. Symptoms may include discharge, anal 

itching, soreness, bleeding, or painful bowel movements.  

Other areas that may be infected by N. gonorrhoeae include the throat and eye. 

Infections in the throat may cause a sore throat, but usually there are no symptoms. 

Gonococcal conjunctivitis in adults is a localized infection that can lead to corneal 

scarring and perforations leading to vision loss (165, 200, 287). In 0.5-3% of those 

infected, disseminated gonococcal infections (DGI) can develop.  Classic symptoms 

include dermatitis, tenosynovitis, and fever. Besides serious secondary complications of 

DGI, gonococcal infections have also been correlated with increased transmission of HIV 

(60, 188). 

C. Treatment  

A variety of antimicrobial agents have been used for the treatment of gonorrhea 

over the years. However, the introduction of new drugs to treat gonorrhea has repeatedly 

led to the emergence and spread of N. gonorrhoeae with resistance to these new drugs 

(308).  In 1935, sulphamides were recommended for the treatment of gonorrhea; 

however, by 1944 there was widespread resistance against this therapy (146, 167).  

Penicillin was then prescribed for treatment until 1976. The gonococcus became resistant 

to penicillin due to the plasmid-mediated resistance as well as other genetic mutations, 

which led to the end of penicillin being recommended as a therapeutic agent for 

gonorrhea in many areas of the world (216). Fluoroquinolones, such as Ciprofloxacin 
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were widely used to treat gonorrhea from the mid-1980s until 2007 when the Centers for 

Disease Control and Prevention no longer recommended this antibiotic for treatment of 

infection (50, 279, 308).  Consequently, only one class of antimicrobials, the extended 

spectrum cephalosporins, is recommended and available for the treatment of gonorrhea in 

the United States; however, resistance against this particular therapy is on the rise (299).  

Most recently a gonococcal strain has been identified that is resistant to all known 

antibiotic therapies (30).  

 In contrast to N. meningitidis, there is no vaccine to prevent infection with N. 

gonorrhoeae.  Gonococcal infections do not elicit protective immunity and individuals 

can be infected by the same strain over and over again because the gonococcal cell 

surface is extremely variable. Given the major morbidity from untreated gonococcal 

infections, along with the rise of antibiotic resistance and lack of vaccine, it is important 

to understand the genetic regulation of outer membrane proteins as well as the nutrient 

acquisition systems employed by the bacteria. These proteins could serve as vaccine 

antigens as well as targets of alternative treatments for the sexually transmitted infection 

caused by N. gonorrhoeae.  

 

V. N. gonorrhoeae Virulence Factors 

N. gonorrhoeae expresses a wide range of virulence factors that contribute to 

successful infection of the human host. These virulence factors include those that 

contribute to mucosal adherence, cellular invasion, and immune evasion.   

A. Pilus  
Gonococcal pili play an important role in colonization of host tissue and piliated 

gonococci have been recovered from primary cultures (150, 151).  Pili are long (<6µm) 
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filamentous structures that extend from the bacterial surface. The pili allow the 

gonococcus to overcome the electrostatic barrier between the bacterium and the 

eukaryotic host cell (125).  Gonococcal pili are not only associated with colonization but 

are important virulence factors because they play a role in the uptake of DNA.  Piliated 

gonococci are 1000-fold more competent for transformation by DNA than non-piliated 

bacteria (24, 95, 268).  Pili also play a role in twitching motility in which the pilus fibers 

retract causing the bacteria to move along most surfaces (35).  

 The pilus fiber is primarily composed of a single pilin protein subunit, PilE, 

which is assembled in a helical arrangement into a filament with a diameter of 6nm (214). 

Located on the tip of the pilus fiber is the PilC protein (247) which has also been 

identified as a surface component of N. gonorrhoeae (236, 246). Neisserial pili interact 

with many cell types including epithelial cells, endothelial cells, granulocytes, 

macrophages, and erythrocytes (248, 262, 294, 295). There are at least two different host 

cell binding epitopes on the pilus. One epitope is the PilE subunit along the pilus fiber 

and the other epitope is on the tip of the pilus mediated by PilC (257).   Very little is 

known about the receptors that are recognized by the two binding functions of the pilus 

or about the cellular response to pilus-mediated adherence.   Biochemical studies 

performed to elucidate the cellular receptors for pilin dependent adhesion were 

inconclusive with different studies concluding that receptors were either carbohydrate or 

proteinaceous in composition (110, 153). 

 Since pili are surface exposed and are major virulence factors of the gonococcus; 

attempts to produce an anti-gonococcal vaccine was focused on this surface antigen (33, 

187, 285). However, pilus expression is phase variable due to the poly-cytosine tract in 
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pilE (156).  This phase variation leads to reversible on and off switching of pilin.  Along 

with phase variable expression, pili also undergo antigenic variation.  Antigenic variation 

results from a nonreciprocal transfer of DNA sequences from one of many silent pilS 

cassettes into the expressed pilE locus (18, 112, 195, 276). As the pilS locus remains 

unchanged during the recombination reaction, the process resembles a classic gene 

conversion event (314). In addition to phase and antigenic variation, pilin also undergo 

post-translational modifications. These modifications include phosphorylation as well as 

glycosylation (126, 272).  The high degree of PilE antigenic variation, phase variation 

and post-translational modifications likely contribute to both the failure of gonococcal 

infection to elicit protective immunity in the human host and the lack of efficacy 

associated with N. gonorrhoeae pili vaccines (33, 261). 

B. Opas  
 

Neisserial Opa proteins were originally identified because changes in their expression 

led to altered colony opacity and color due to changes in bacterial aggregation (29, 274).  

The Opa proteins constitute a family of closely related but size-variable integral outer 

membrane proteins that are predicted to span the membrane eight times with four surface 

exposed loops (124, 182). A single gonococcal strain can possess up to 11 unlinked 

chromosomal alleles that encode distinct Opa variants.   It is thought that Opa expression 

is important for gonococcal infection because gonococci recovered after urogenital, 

cervical or rectal infection are typically Opa+, as are bacteria recovered after the 

inoculation of human volunteers with transparent (Opa−) bacteria (143, 275).   The only 

exception to this Opa dependence is that Opa- bacteria predominate in the cervix early in 

the menstrual cycle (274). Opas are thought to play a role in intimate interactions with the 
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host cell that leads to trancytosis into sub-epithelial tissues. It has been demonstrated that 

a subset of Opa protein variants bind to host cell surface-associated heparin sulfate 

proteoglycans (HSPG).  Many groups have also determined that Opas specifically bind to 

CEACAM receptors that are differentially expressed on multiple tissues in the human 

host (55, 292). Most Opa proteins bind to either CEACAM or HSPG glycoproteins 

however some interact with both cellular receptors.  The Opa variants that do bind to both 

cellular receptors are only able to mediate cellular invasion by CEACAM (157).  It has 

been demonstrated by Wang et al, that gonococci expressing CEACAM-specific Opa 

proteins are capable of passing from apical to the basolateral surface of polarized 

epithelial cell line monolayer (298).  Opas have also been shown to down regulate the 

host immune response through the induction of B cell apoptosis, suppression of T-cell 

activation (34), and inhibition of an antibody response (213).  Similar to pilin, the 

expression of each Opa allele is phase variable making it a poor vaccine antigen. Opa 

phase variation is due to slipped strand mispairing in which a change in the number of 

CTCTT repeats in the structural gene resulting in differential expression of Opas (204).  

Additionally, gonococcal strains can express zero or multiple Opas at one time (270).  

C. Porin  

Porin is the predominant outer membrane protein of N. gonorrhoeae. It is encoded by the 

porB gene. Gonococci possess one of two porB alleles, porB1a or porB1b, which encode 

the PIA or the PIB protein, respectively (74, 106)   Gonococcal strains are separated into 

two serotypes based on the two different porin proteins.  PorB assembles in the 

membrane as a trimeric complex in which each PIA or PIB monomer forms a β barrel 

structure with eight predicted surface-exposed loops (68, 142). PorB serves as an ion 
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channel and is essential for cell survival. Porin has several functions associated with 

gonococcal pathogenesis including effects on host cell apoptosis (201). Porin has been 

shown to either induce or inhibit apoptosis depending on the cell line that is infected (91, 

201). Porin can aid in cell invasion (103) and can also translocate from bacterial 

membranes into the membranes of target cells.  Porin has been identified in cytoplasmic 

and phagosomal membranes of host cells (300). In addition, PorB has been associated 

with antibiotic resistance (100).  PorB aids in immune evasion in multiple ways as well. 

Purified gonococcal porins can inhibit phagocytosis and degranulation by PMNs (26, 

114).  The gonococcal porin PorB1A is critical in modulating stable serum resistance by 

binding to factor H (239).  Porin can also down regulate the classical complement 

pathway by binding to the C4b binding protein (238).  Unlike the majority of gonococcal 

surface structures, PorB is antigenically stable during infection. Porin diversity does exist 

among strains but primarily within the surface-exposed loops. Porin diversity as well as 

its ability to modulate immune responses makes it a poor vaccine candidate. However the 

diversity of porin is exploited by the conventional N. gonorrhoeae serotyping method, 

which uses a panel of monoclonal antibodies to type strains (277). Sequence-based 

methods, such as multiple antigen sequence typing, porB sequencing (288), and porB 

variable region (188) typing (282) are also used for serotyping strains.  

D. Lipooligosaccharide 

 Lipopolysaccharide (LPS) is a component of the gram-negative outer membrane. 

It is the main component of the outer leaflet of the outer membrane, being anchored to 

the membrane by the lipid A moiety which is endotoxic. Extended outward from the 

membrane is a core oligosaccharide followed by the O antigen which is a polymer of 
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short oligosaccharide repeats. N. gonorrhoeae produce a short type of LPS known as 

lipooligosaccharide (LOS) because the core oligosaccharide structure is highly branched 

and it lacks repetitive O-antigen side chains. It has recently been observed that LOS may 

play a role in the resistance to antimicrobial peptides (173). LOS also induces the 

production of pro-inflammatory cytokines and binds to the TREM-2 receptor, which is 

expressed on genitourinary epithelial cells and by the fallopian tube epithelium in the 

host (231, 233).   

 LOS varies amongst gonococcal strains and this variation is due to phase-variable 

expression of the glycosyl transferases, which are responsible for the biosynthesis of 

variable α-chain carbohydrates of LOS. The phase variable expression is from slipped 

strand mispairing due to poly-guanosine tract within the coding sequence of the gene 

(70). LOS can also undergo post-translational modification in which a terminal galactose 

residue is modified by the membrane-associated bacterial sialyltransferase using host-

derived cytidine 5’-mono-phospho-N-acetylneuraminic acid (CMP-NANA) as the sialyl 

donor (183). The sialylation of LOS prevents complement dependent killing of 

gonococci.  (9, 305).   

E. Reduction-modifiable protein 

Reduction-modifiable protein (RMP) is a gonococcal outer membrane protein 

whose name refers to the observation that its  molecular weight shifts following SDS-

PAGE in reducing conditions (181). RMP is conserved amongst gonococcal strains and is 

thought to be a homolog of OmpA in Enterobacteria (104, 105). Antibodies produced 

during gonococcal infection are specific to RMP (191, 242). When these RMP specific 

antibodies are depleted from human sera, gonococci are then susceptible to serum-
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dependent killing. It has been demonstrated that RMP specific antibodies block the 

binding of IgG, resulting in protection of the bacteria from the host immune response 

(242). It is also thought that RMP antibodies increase host susceptibility to infection 

(222).  

F. IgA1 protease 

Cleavage of IgA antibodies by the gonococcal protease leads to the separation of 

the F(ab) fragment, which is involved in the antigen binding, from the FC domain, which is 

involved in effector function (221).  This results in the pathogen becoming decorated in 

F(ab) fragments, masking gonococcal epitopes from the host immune system. It has also 

been demonstrated that IgA1 protease cleaves human lysosomal/late endosome 

associated membrane protein 1 (h-lamp-1) which may lead to survival during infection 

(123, 177). Additionally, it has been demonstrated that IgA protease plays a role in the 

transcytosis of gonococci across polarized cells (134). There are serologically distinct 

IgA1 proteases of N. gonorrhoeae and this is due to the horizontal exchange of iga (116).   

Thus IgA protease not only plays a role in immune evasion but may also play a role in 

gonococcal intracellular survival of epithelial cells.  

 

VI. Host Iron Sources  

Iron is an essential element for all living organisms and plays a crucial role in a 

variety of cellular functions in metabolism, cellular growth and differentiation as well as 

oxygen transport, DNA synthesis and energy production (37).  However, excess free iron 

is toxic and donates electrons to produce hydroxyl radicals via the Fenton reaction:   
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Fe2+ + H202 Fe3+ + OH- +OH.  These free hydroxyl radicals cause oxidative stress-

induced damage of DNA, lipids and proteins leading to cell damage and death.  Thus 

99.9% of host iron is held in intracellular storage proteins or bound to host iron binding 

proteins for extracellular transport (189).   The following are iron sources that are 

available within the human host and could provide this necessary nutrient to gonococci.  

A. Ferritin 

Ferritin is an iron-binding protein that is ubiquitous within the human host. 

Ferritin is a 24-mer globular protein with an iron core.  Ferritin is made up of heavy and 

light chain proteins with molecular masses of 21 kDa and 19 kDa respectively (12, 93, 

280). Naturally-occurring ferritin does not contain more than 3000 iron atoms/molecule, 

although in principle it can accommodate up to 4500 (120, 280). The sequestration of 

iron by ferritin serves two purposes.  First, ferritin sequesters iron and segregates the iron 

in a non-toxic form. Second, ferritin serves as a cellular iron storage unit. In normal 

human sera, ferritin circulates at a relatively low concentration of 1µM therefore ferritin 

serves as an intracellular iron source to the host (1).   

B. Transferrin 

Transferrin is a single-chain glycoprotein with the molecular weight of about 80 

kDa and has two structurally similar but functionally distinct lobes.  Each lobe consists of 

two dissimilar domains enclosing a deep hydrophilic cleft bearing an iron binding site.  

Normally, all non-heme iron in circulation is bound to transferrin in human sera and only 

30% of transferrin binding sites are occupied with iron. Transferrin has one of the highest 

metal binding affinities recorded, with a binding constant for ferric iron of 10–23 M (160) 

and can retain iron at a pH as low as 5 (185). The principal physiological role of serum 
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transferrin is to transport iron through the circulatory system and release the iron to iron-

depleted cells in a receptor mediated endocytosis-dependent manner (4).  

C. Lactoferrin  

Similar to transferrin, lactoferrin is an 80 kDa glycosylated protein that is 

comprised of a polypeptide chain folded into two symmetrical lobes. Lactoferrin is 

secreted by mucosal epithelial cells and found in mucosal secretions including tears, 

saliva, vaginal fluids, semen, nasal, bronchial secretions, bile, gastrointestinal fluids, milk 

and urine (85). Lactoferrin has a binding constant for ferric iron of about 10–20 M and can 

retain iron at a pH as low as 3 (14). Lactoferrin is a multifunctional protein that is  

involved in the absorption of iron, but also in immune responses (168, 169), antimicrobial 

activities (310) and has both anticarcinogenic (21) and anti-inflammatory properties (61). 

D. Heme 
Heme is a porphyrin containing an iron atom in its center. Heme is produced in 

virtually all mammalian tissues. Its synthesis is most pronounced in the bone marrow and 

liver because of the requirements for incorporation into hemoglobin and cellular 

cytochromes (218, 271). Isolate heme is very toxic is toxic to cells but required for  

hemoproteins such as hemoglobin and hemopexin (271).  

E. Hemoglobin 
Hemoglobin, found in red blood cells,  transports O2 in the circulatory system and 

facilitates reactive oxygen and nitrogen species detoxification. It is tetrameric in structure 

and each subunit contains a heme group (217).   

F. Haptoglobin 
Haptoglobin is a plasma hemoglobin scavenger that binds to hemoglobin with a 

binding affinity of 10-12 M (148). Release of hemoglobin into plasma is the result of 

senescent erythrocytes being degraded. In plasma, stable hemoglobin-haptoglobin 



www.manaraa.com

 

 

16

complexes are formed and are delivered to the reticulo-endothelial system by receptor-

mediated endocytosis (148).  

G. Siderophores  

Free iron concentrations in the human host are reduced to about 10-24M in human 

serum due to host iron binding proteins such as transferrin, and hemoglobin (240).  To 

overcome the lack of free iron availability in the human host, commensal and pathogenic 

bacteria produce siderophores. Siderophores are low molecular weight iron chelators that 

can strip iron from host iron binding proteins.  They are also produced and secreted by 

yeast, fungi and many plants and have dissociation constants in the range of 10-20M (57).  

Most siderophores are biosynthetically produced by large multienzyme synthases that 

resemble the eukaryotic fatty acid synthases (15, 69). They often have a peptide 

backbone, with modified amino acid side chains creating the iron-coordinating ligands. 

Siderophores are classified by the iron coordinating ligands into three groups including 

the catecholate, hydroxamate and hydroxycarboxylate groups (130).  Once released into 

the environment or human host, the siderophore will sequester iron from iron binding 

proteins such as transferrin or will chelate free iron in the environment.  The ferrated 

siderophore will then return to the bacteria and deliver the sequestered iron.   

H. Neutrophil gelatinase-associated lipocalin 
 

Neutrophil gelatinase-associated lipocalin (NGAL) also known as lcn2 or 

siderocalin is constitutively expressed in myelocytes and stored in specific granules of 

neutrophils as well as expressed in epithelial cells during inflammation. NGAL which is 

part of the lipocalin family, has a tertiary structure determined by highly conserved 

segments of the individual lipocalin proteins, termed the lipocalin folds. These folds form 
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eight anti-parallel β-sheets that surround a hydrophobic pocket. Lipocalins in general act 

as transport or carrier proteins (90) by binding substrates to the hydrophobic pocket. 

NGAL functions as a siderophore binding protein. Therefore, NGAL is like a 

counterstrike of the host against the bacteria scavenging for iron. Interestingly, certain 

bacteria are able to glucosylate the catecholate siderophore enterobactin to form 

salmochelin. Salmochelin, is not recognized by NGAL and can continue to strip host iron 

binding proteins of their iron (88).  

I. 2,5 DHBA 

It has been recently determined that mammalian cells may secrete a siderophore-

like molecule.  When distinguishing if NGAL binds to human derived iron coordinating 

molecules, 2,5 Dihydroxybenozic acid (DHBA) was identified.  2,5-DHBA is related to 

2,3-DHBA which is the  iron-binding moiety of the bacterial siderophore enterobactin 

(75).  A mammalian homolog to entA was identified. EntA plays a critical role in 

synthesis of the bacterial siderophore enterobactin but was identified in murine cells to 

play a role in the synthesis of the siderophore with the 2,5 DHBA moiety (75). When this 

entA homolog was knocked down with RNA interference, there was a deregulation of 

cellular iron homeostasis within the murine cells. The composition and structure of the 

intact mammalian siderophore remain unknown (75).   

 

VII. Iron Acquisition Systems of N. gonorrhoeae  

Because  N. gonorrhoeae is an obligate human pathogen it must rely on human 

iron sources for its nutritional needs.  Unlike most bacteria, N. gonorrhoeae do not 

produce siderophores (304).  Rather, gonococci employ 1- and 2- component systems to 
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acquire iron from host iron binding proteins. Gonococci acquire iron from multiple host 

iron binding proteins (Figure 1).  
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Figure 1.  Iron Acquisition Systems of N. gonorrhoeae 
The outer membrane receptors for each iron source are depicted as barrels traversing the 
outer membrane (OM).  In the 2-component iron acquisition systems, the associated 
lipidated proteins are shown tethered to the outer membrane.  The periplasmic iron-
binding protein (PBP) for each system is depicted as a brown semi-circle. The PBP is 
responsible for shuttling the iron across the periplasmic space. Transferrin and 
Lactoferrin acquisition systems utilize the PBP FbpA, the Fet system utilizes the protein 
FetB and it is hypothesized that FetB2 is associated with TdfF.  TonB, ExbB, and ExbD 
are responsible for supplying energy to the iron acquisition systems and are light blue, 
attached to or imbedded within the cytoplasmic membrane (CM). The ABC transport 
system which is responsible for transporting iron across the cytoplasmic membrane is 
depicted in bright green and traversing the cytoplasmic membrane. The transferrin and 
lactoferrin transport system utilize FbpBC for transport of iron across the CM.  It is 
hypothesized that the Fet system utilizes an ABC transport system encoded by genes 
ng2091-2089.  There has not been a PBP or ABC transport system identified for 
hemoglobin transport.  An ABC transport system has not been identified for TdfF-
dependent intracellular iron acquisition system.  
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A. Transferrin iron acquisition system 

The gonococcal transferrin-iron uptake system is a TonB-dependent system 

composed of two transferrin binding proteins, TbpA and TbpB (Figure 1).  TbpA is an 

outer membrane barrel made up of 22 transmembrane β-strands (62, 64).  It has 11 

surface exposed loops and an amino terminal plug domain (62). TbpA is necessary for 

the internalization of iron from transferrin.  TbpB is a surface-tethered lipoprotein that is 

important for increased efficiency of iron acquisition (6). The precise mechanism of iron 

removal and transport into the bacteria’s periplasm on ferrated transferring has bound to 

TbpA/TbpB has not been completely elucidated. However, it has been proposed that once 

iron is extracted from transferrin it interacts with the plug domain of TbpA (207, 312) 

and once the plug domain interacts with energized TonB the plug unfolds resulting in the 

presentation of the iron to the periplasm (111).  In the periplasm, FbpA binds to the iron 

(54) and shuttles it to the ABC transport system which is composed of FbpB and FbpC 

(Figure 1).  The ABC transport system transports the iron across the bacterial cytoplasmic 

membrane.   

B. Lactoferrin iron acquisition system 

Similar to the transferrin acquisition system, the lactoferrin iron acquisition system is 

made up of two components and is TonB-dependent (22, 25).  LbpA is similar to TbpA in 

that it is a TonB-dependent outer membrane transporter; LbpB is an outer membrane 

lipoprotein.  Interestingly about 50% of gonococcal isolates have lost the ability to 

express the Lbps due to a deletion removing the lbpB gene and a portion of the lbpA gene 

(5).   Also, lbpB, when present, is subject to phase variation due to a poly-cytosine tract 

within the gene’s coding region.  Details of how the Lbps bind lactoferrin, extract iron, 
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and are energized by TonB have not been elucidated.  However, it has been determined 

that the Fbp system used by the Tbp system also transports the iron extracted by the Lbp 

system across the periplasm and into the cytoplasm (54) (Figure 1).  

C. Hemoglobin iron acquisition system  

Gonococci are capable of utilizing both free heme and heme bound to hemoglobin 

as an iron source (52, 53).  There has not been a specific receptor identified for heme 

acquisition but hemoglobin acquisition is employed by a TonB-dependent 2-component 

system consisting of HpuA and HpuB (Figure 1).   HpuB is the outer membrane β-barrel 

whereas HpuA is the associated lipoprotein. Both proteins must be present for iron 

acquisition from hemoglobin to occur. It is hypothesized that the HpuA/B proteins form a 

heteromultimer in order to constitute the obligate hemoglobin binding pocket (52).   

Similar to Lbp, the HpuA/B system is phase variable due to a poly-guanosine tract within 

the hpuA gene (52). Interestingly, HpuA and HupB do not exclusively interact with 

human hemoglobin and can recognize hemoglobin from non-human sources.  The 

subsequent transport of iron from the HpuA/B system is presumed to involve a 

periplasmic binding protein and ABC transport system; however neither has been defined 

for this iron acquisition system (Figure1) .   

D. Siderophore iron acquisition 

As stated previously N. gonorrhoeae does not produce siderophores.  However the 

bacteria can utilize iron from siderophores produced by other bacteria, or 

xenosiderophores. N. gonorrhoeae can acquire iron from the catecholate 

xenosiderophores aerobactin, enterobactin, salmochelin, and dihydroxybenzoylserine (43, 

273, 303).  The fetA gene formerly named frpB (20) encodes the TonB-dependent ferric 
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enterobactin transporter, FetA. It was demonstrated that FetA is an important component 

for the binding and acquisition of the xenosiderophore ferric enterobactin (43), which is a 

catecholate-type siderophore produced by enterics.  Distinct from the Lbps, Tbps, and 

Hpu, FetA is a single component transporter (Figure 1).  Downstream of fetA are genes 

that encode a putative periplasmic binding protein, fetB, and ABC transport system, 

which is thought to be involved in the transport of iron from FetA into the gonococcal 

cytoplasm (Figure 1).  Similar to the majority of surface exposed proteins, fetA is phase 

variable due to a poly-cytosine track in the promoter of the gene (44).  Our laboratory has 

also determined that gonococcal strain FA19 acquires enterobactin, salmochelin, and 

dihydroxybenzoylserine in a TonB-independent manner (273).  Strain FA19 requires the 

FbpABC transport system for utilization of these xenosiderophores (273) rather than the 

Fet system. These findings indicate that there are Ton-dependent and independent 

pathways for the utilization of iron from xenosiderophores.  

E. Intracellular iron acquisition 

Another single component transporter, the TonB-dependent transporter, TdfF has 

been identified to be important for intracellular survival in gonococcal strain FA1090 

(113). The tdfF mutant was defective in intracellular survival; however, excess iron 

overcame this survival defect indicating that TdfF is important for intracellular iron 

acquisition (113).  Interestingly, tdfF expression only occurs in the presence of epithelial 

cells or cell culture media and not in the presence of bacterial growth media. This finding 

indicates that a cell or serum specific molecule is involved in inducing tdfF expression 

(113).  Additionally, tdfF has only been identified in pathogenic Neisseria and not in 

commensals.  Upstream of tdfF is a gene that codes for a putative periplasmic binding 
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protein that has homology to the periplasmic binding protein FetB and is annotated as 

FetB2. It is hypothesized that FetB2 is part of the intracellular iron acquisition system; 

however, the rest of the transport system remains unidentified (Figure 1).   The ligand 

involved in TdfF-dependent iron acquisition has not been identified.   

It has also been determined that TonB-dependent intracellular iron acquisition is 

strain specific.  Gonococcal strains FA19 and MS11 do not depend upon the expression 

of TonB or TdfF for survival (317).  Both of these strains differ from gonococcal strain 

FA1090 in that they both posses a gonococcal genetic island (178) which encodes a type 

IV secretion system (117).  It is hypothesized that this GGI is involved in a TonB bypass 

mechanism (317).    Neisseria meningitidis can trigger rapid redistribution and 

degradation of cytosolic ferritin within infected epithelial cells suggesting that N. 

meningitidis can tap into ferritin as an iron source (162). Both gonococci and 

meningococci can interfere with transferrin uptake by infected epithelial cells (31) 

implying the microorganisms affect iron transport within the host cell.  Ferritin 

acquisition by N. gonorrhoeae has not been investigated.  

F. TonB-dependent transport 

The presence of an outer membrane in Gram negative bacteria limits access to 

many nutrients. Any molecules below the threshold size of about 600 kDa can cross the 

outer membrane by diffusion through porin channels (205).  In contrast most nutrients 

and iron sources are either too big or too scarce to be acquired by diffusion through 

porins. Thus, high affinity receptors are employed and the energy necessary for the 

delivery of substrates to the periplasm is derived from a complex of proteins that include 

TonB, ExbB and ExbD. Almost all iron sources utilized by gonococci are taken up in a 



www.manaraa.com

 

 

25

high affinity, receptor-mediated, TonB-dependent manner. The exceptions are ferric 

citrate, heme, and some xenosiderophores, which are taken in a TonB-independent 

manner by gonococci (23, 273).  TonB interacts with components in both the cytoplasmic 

and outer membranes whereas ExbB and ExbD are anchored in the cytoplasmic 

membrane.  ExbB and ExbD harness energy from the proton motive force of the 

cytoplasmic membrane and transfer this energy to TonB (128). Once TonB is energized, 

it takes on a different conformation compared to when it is in an energy-deficient state. 

TonB then transfers its energy to the outer membrane transporters.  There are currently 

two models for how TonB transduces energy from the cytoplasmic membrane to the 

outer membrane. In the shuttle model, TonB which dimerizes, transfers energy from the 

cytoplasmic membrane to the TonB-dependent transporter in four steps. In step one, the 

potential energy of the cytoplasmic membrane proton gradient is harnessed by the 

ExbB/D energy-harvesting complex. In step two, the energy is stored via a 

conformational change in the associated TonB dimer. In the third step, TonB shuttles 

through the periplasm, where the stored potential energy is transferred to a ligand bearing 

TonB-dependent transporter. The energization of the transporter leads to ligand release 

into the periplasmic space. In step four the de-energized TonB is then returned to the 

cytoplasmic membrane (225, 226).  Another model of TonB-dependent energization is 

the propeller model. In the propeller model, TonB remains associated with the 

cytoplasmic membrane at all times.  Once energized by the proton motive force through 

ExbB/D the C-terminal ‘propeller’ of TonB becomes associated with the plug portion of 

the outer membrane transport and causes the release of the bound ligand into the 

periplasm (45).   
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VIII. Genetic regulation of iron acquisition  

Excess iron is toxic due to its ability to catalyze Fenton reactions which leads to 

the formation of reactive oxygen species. Iron uptake has to be well regulated to maintain 

the optimum concentration of intracellular iron and prevent intracellular iron overload.  

A. Fur regulation  

The Fur protein of E. coli is a 17 kDa polypeptide (253) which acts as a 

transcriptional regulator of iron-regulated promoters by virtue of its Fe2+-dependent DNA 

binding activity (13, 73).  Regardless of the presence or absence of Fe2+ the Fur protein 

has been isolated as a dimer (197).  Under iron-replete conditions, Fur binds to the iron 

and acquires a conformation the enables it to bind to a target DNA sequence called a Fur 

box.  When Fur is bound to the Fur box, transcription is inhibited and the genes are 

repressed.  (Figure 2) When iron is scarce, Fur cannot complex with Fe2+ or bind to the 

Fur box, allowing the RNA polymerase to access the iron regulated genes (109, 154) 

(Figure 2).  A Fur homolog has been identified in N. gonorrhoeae (19). Using DNA 

footprinting, it was established, that in E. coli , the strongest natural Fur binding site 

comprises two hexameric GATAAT direct repeats followed by a 6 base pair inverted 

repeat, ATTATC (82). The gonococcal Fur binding sequence is similar to that of E. coli 

with two hexameric direct repeats consisting of ATAAT followed by ATTAT (139). 

Early studies of N. gonorrhoeae using a missense mutant confirmed that Fur regulated not 

only known iron acquisition genes but also a broad range of other genes (78, 281). It was 

recently determined that roughly 10% of the genes in the N. gonorrhoeae genome are 

responsive to iron, with 30% of those open reading frames (ORFs)  regulated directly by 

Fur (139). 



www.manaraa.com

 

 

27

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Fur Regulation 
Fur is a dimeric protein depicted in purple. Under iron-replete conditions, Fur binds to 
iron (red circles) and acquires a confirmation the enables it to bind to a target DNA 
sequence called a Fur box, usually located within the promoter of an iron regulated gene. 
The Fur box sequence, as depicted in the yellow rectangle is comprised of two hexameric 

GATAAT direct repeats followed by a 6 base pair inverted repeat, ATTATC. When Fur 
is bound to the Fur box, transcription (green arrow) is inhibited (red “X”) and the gene is 
repressed.   When iron is scarce, Fur cannot complex with Fe2+ or bind to the Fur box, 
allowing the RNA polymerase to access the promoter and the gene is transcribed (green 
arrow).  
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B. AraC-like regulation 

The AraC family of transcriptional regulators constitutes one of the largest groups 

of regulatory proteins in bacteria (311). These regulators are involved in the 

transcriptional regulation of a variety of cellular processes in Gram-negative and Gram-

positive bacteria, including carbon metabolism, stress responses and virulence (97).  

AraC, the regulator of the L-arabinose operon in Escherichia coli, was the first member 

to be identified, purified, and characterized biochemically (108, 258-260). In general, 

these regulators are between 200 and 300 amino acids in length arranged in two domains: 

a conserved helix-turn-helix DNA-binding domain at the C-terminus and variable N-

terminal domain. In many cases the variable N-terminal domain is responsible for both 

protein dimerization and ligand binding. In the context of iron acquisition, AraC-like 

transcriptional regulators have been employed by a variety of bacteria including 

Pseudomonas aeruginosa, Bordetella species, and Yersenia pestis (16, 87, 127). In all 

three of these organisms the AraC-like transcriptional regulator is involved in the 

regulation of siderophore biosynthesis and acquisition.  

The mechanism of AraC-like regulation of siderophore genes involves the 

cognate siderophore functioning as a co-inducer binding to the N-terminal domain of the 

AraC-like regulator. Generally, both the AraC-like regulator, and the siderophore 

biosynthesis/acquisition genes are repressed by Fur under iron-replete conditions (Figure 

3). Once the Fur repression is relieved under iron-deplete conditions, the AraC-like 

regulator is expressed, as well as very low levels of siderophore biosynthesis/acquisition 

genes (Figure 3). Once the AraC-like regulator binds to its inducing agent, usually the 
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siderophore, it will then activate the transcription of the siderophore/biosynthesis genes 

(Figure 3). The gonococcal genome does encode AraC-like regulators and it has been 

recently demonstrated that one of these regulators, MpeR, (92) is Fur regulated (139).   
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Figure 3. AraC-like Regulation 
The AraC-like regulator and siderophore biosynthesis/acquisition genes are repressed by 
Fur (purple) under iron-replete conditions. Once Fur repression is relieved under iron-
deplete conditions, the AraC-like regulator gene is expressed (large green arrow), as well 
as very low levels of siderophore biosynthesis/acquisition genes (small green arrow). The 
AraC-like regulator protein (large orange half moon) then binds to an inducing molecule 
(blue circles). This inducing agent is usually a siderophore. After the AraC-like protein 
binds to its specific inducer, it positively regulates the transcription of the 
siderophore/biosynthesis genes (large green arrows). 
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C. Slipped-strand mispairing 

Slipped-strand mispairing occurs during DNA replication, when DNA polymerase 

‘slips’ on a string of repeated nucleotides in the template DNA, either adding or deleting 

one repeat unit in one of the daughter strands (171).  The string of repeated nucleotides 

can consist of a simple homopolymeric tracts or a single nucleotide (291). Slipped-strand 

mispairing can result in phase variation due to repeated nucleotides located within the 

open reading frame of a gene, which causes a frameshift mutation. This kind of phase 

variation due to slipped strand mispairing occurs in gonococcal genes that encode 

enzymes involved in LOS synthesis, as well as Opas, and HpuB (17, 52, 204).  If the 

repeated nucleotides exist in the promoter region of a gene, slipped strand mispairing can 

result in differences in promoter-strength during transcription. Phase variation due to 

changes in promoter strength occurs in gonococcal gene fetA which encodes the 

xenosiderophore receptor, FetA (44).  

 

IX. Objectives 

 The goal of the research described in this thesis was to characterize TonB-

dependent transporters involved in intracellular and extracellular iron acquisition and the 

transcriptional regulation involved in the expression of these transport systems.  This was 

accomplished through three major objectives.  The first involved the analysis of TdfF 

expression in the presence of host derived inducing signals in vitro which could lead to 

potential ligands for TdfF-specific iron acquisition.  The second objective was to further 

our understanding of potential intracellular iron sources acquired by Neisseria 
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gonorrhoeae in a TonB-dependent manner.  The third objective was to elucidate the iron 

acquisition system responsible for xenosiderophore uptake and the regulation behind this 

acquisition system.  In this objective we also further characterized specific 

xenosiderophores utilized by gonococci.  These studies have not only elucidated the 

mechanism of two different TonB-dependent iron acquisition systems but also identified 

genetic differences between gonococcal strains responsible for variations in iron 

acquisition. Understanding the mechanism of intracellular and extracellular iron 

acquisition and the regulation behind these systems can lead to a better understanding of 

the pathogenesis by the microorganism. 
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Chapter 2 Material and Methods  

 

I. Bacterial growth conditions  

 Gonococcal strains (Table 2) were maintained on GC medium base (GCB; Difco) 

containing Kellogg’s supplement 1 (151) and 12 µM ferric nitrate. For mutant selection, 

strains were grown on media supplemented with 50µg/ml kanamycin or 1 µg/ml 

erythromycin.  For iron-depleted growth conditions, gonococci were grown in a defined 

medium that was treated with Chelex 100 (BioRad) to render it iron free (CDM) (304).  

For iron-replete conditions, gonococcal strains were grown in CDM for one mass 

doubling before the addition 12 µM ferric nitrate. For growth in the presence of 

siderophores, gonococci were grown in liquid CDM for one mass doubling, and then 

ferric siderophores were added at a concentration of 10 µM.  All liquid cultures were 

grown at 37°C with 5% CO2.  For large scale preparation of gonococcal membrane 

proteins, GCB broth containing Kellogg’s supplement 1 was inoculated with plate-grown, 

non-piliated gonococci as described previously (64). For iron-deplete conditions, the iron 

chelator Desferal (deferroxamine mesylate; Sigma Aldrich) was added to a final 

concentration of 50 µM; for iron-replete conditions, 12 µM ferric nitrate was added. E. 

coli strains were maintained on Luria Bertani agar plates and grown in Luria Bertani 

media containing 200 µg/ml of carbenicllin at 37°C shaking at 225 rpm.   
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Table 2. Strains and Plasmids used in this study 
Strains and 
plasmids 

Genotype a and/or relevant characteristics Reference or 
Source 

N. gonorrhoeae   
FA1090 

 
Wild type (ΔlbpA, HpuAB off) 

 
(28) 

MS11 
 

Wild type strain 
 

(196) 

FA19 
 

Wild type strain 
 

(198) 

UU108 Wild type strain 
 

 

FA6959 FA1090 fetA::Ω (Strr Spcr) 
 

(43) 

FA7241 
 

FA1090 ng2090:: Ω (Strr Spcr) 
 

Sparling Lab 
(unpublished) 

FA7029 FA1090 ng2088 :: Ω (Strr Spcr) Sparling Lab 
(unpublished) 

MCV656 
 

FA1090 tonB::Ω (Strr Spcr) 
 

(113) 

MCV659 FA1090 tdfF::Ω (Strr Spcr) (113) 
 

MCV304 
 

FA1090 mpeR::aphA-3 (Strr Spcr Kmr ) 
 
This study 

 
MCV305 

 
FA1090 mpeRC(Strr Spcr Kmr Ermr ) 

 
This study  

 
MCV306 

 
fetA::Ω, mpeR::aphA-3 (Strr Spcr kmr ) 

 
This study  

E. coli   
BL21 (DE3) F- ompT hsdSB (rB-mB-) gal dcm (DE3) Novagen 

 
C41 (DE3) 

 
F- ompT hsdSB (rB-mB-) gal dcm (DE3) derivative 

 
Avidis 

 
Top10F’ 

 

F´{lacIq, Tn10(TetR)} mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 

galU galK rpsL (StrR) endA1 nupG 

 

 
InVitrogen 

Rosetta F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pLysSRARE2 
(CamR) 

Novagen 

Plasmids   
pCR2.1 TOPO KanR AmpR InVitrogen 

 
peT22b(+) 

 
AmpR 

Novagen 

 
pVCU353 

 
PCR 2.1 TOPO containing tdfF full length amplified with 

oVCU365 and oVCU367 

This study 
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pVCU358 PCR 2.1 TOPO containing tdfF plug amplified with 
oVCU412 and oVCU413 

This study 

pVCU359 PCR 2.1 TOPO containing tdfF loops 1-5 amplified with 
oVCU414 and oVCU415 

This study 

pVCU364 PCR 2.1 TOPO containing ng2090 amplified with oVCU 
629 and oVCU630 

This study 

pVCU354 pET22b(+) containing full length tdfF This study 
 

pVCU355 
 

pET22b(+)containing tdfF plug 
 
This study 

 
pVCU357 

 
pET22b(+)containing tdfF loops 1-5 

 
This study  

 
pGCC3-mpeR 

 

 
pGCC3 containing the full-length mpeR gene and 250 bp of 

upstream sequence 
 

 
This study 

pVCU366 pCR 2.1 containing 800bp of fetA through fetB amplified by 
oVCU498 and oVCU499 

This study 
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II. Cell culture Media and incubation conditions 

 The ME180 endocervical epithelial cell line (HTB 33; American Type Culture 

Collection) was maintained in McCoy’s 5A medium (Gibco) supplemented with 10% 

heat inactivated fetal bovine serum (FBS; Gibco). Cells were maintained at 37°C in a 5% 

CO2 atmosphere. Infection media was McCoy’s 5A supplemented with 10% FBS and 

24µM Fe(NO3)3 and replication media consisted of McCoy’s 5A supplemented with 10% 

FBS and no additional iron.  For detection of tdfF, gonococci were incubated in the 

following media: McCoy’s 5A with 10% FBS (replication media), replication media 

supplemented with 50µM epinephrine (Sigma), replication media supplemented with  

50µM norepinephrineenephrine (Sigma), replication media supplemented with 50µM 

human liver ferritin (Calbiochem), or McCoy’s 5A media alone for 4 hours before RNA 

isolation. 

III. Construction of gonococcal mutants   

All strains and plasmids used in this study are listed in Table 2.  Gonococcal 

strains FA1090, MS11, FA19 and UU1008 have been described previously (28, 196, 

198). To create gonococcal strain MCV304, the mpeR gene was inactivated by the 

insertion of a kanamycin resistance cassette (aphA-3) as previously described (92).  All 

oligonucleotide primers used in this study are described in Table 3. Primers 5'mpeR and 

3'mpeR were used to PCR amplify chromosomal DNA from FA19 mpeR::aphA-3 strain 

(92) . The amplicon was then used to transform gonococcal strain FA1090.  To select for 

allelic exchange, FA1090 transformants were plated on GCB agar containing kanamycin.  

Strain FA6959 was previously constructed (43) by insertional inactivation of the FA1090 

fetA gene with a polar Ω cassette (228).  For the construction of the complemented strain, 
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mpeRC (MCV305), the mpeR coding sequence from gonococcal strain FA19 was 

amplified using primers 5’ pMpeR pac and 3’ GC4 MpeR (Table 3). The resulting 

amplicon contains the mpeR gene and 250 bp upstream of the mpeR start codon. The 

amplicon was inserted between the PacI and PmeI sites of pGCC3 (265). The resulting 

plasmid, pGCC3-mpeR, was then digested with ClaI and the fragment containing mpeR, 

lctP, aspC, and the erythromycin resistance cassette was purified and used to transform 

MCV304. Transformants were selected on GCB agar supplemented with erythromycin. 

The resulting complemented strain, MCV305, contains the original mpeR mutation and 

an ectopically-inserted copy of the wild-type mpeR gene, preceded by 250 base pairs 

including upstream regulatory signals. The fetA, mpeR double mutant strain, MCV306, 

was constructed by transforming FA6959 with the mpeR::aphA-3 amplicon as described 

in the construction of MCV304. GCB agar supplemented with kanamycin was used for 

selection.  Strains MCV656 was created by inserting a polar Ω cassette into tonB and 

strain MCV659 was created by inserting a polar Ω cassette into tdfF as previously 

described (113).  
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TABLE 3. Oligonucleotides used in this study. 
Oligonucleotide Amplicon Sequence (5’-3’) 
5’mpeR mpeR::aphA-3  ATGAACACCGCCGCCATCT 
3’mpeR mpeR::aphA-3  GCACTTTTTCACATCCGAAGG 
5’pMpeR pac mpeRC construct GGTTAATTAACGAAACAACCTGCAGAAACC 
3’ GC4 MpeR mpeRC construct GGTTTAAACTCAGCACTTTTTCACATCCGA 
malEmpeRF mpeR coding region CACTGGGGATCCATGAATACCGCCGCCATCT 
malEmpeRR mpeR coding region CACTGGCTGCAGTCAGCACTTTTTCACATCCGA 
5’fetAup 500bp upstream fetA probe GCCCGAACGGTTCGGACAAATT 
3’fetAup 
3'fetAupint 
5'fetAupint 

500bp upstream fetA probe 
fetA1 upstream probe 
fetA2 upstream probe 

TTGTTCGTCCTTTTGAGTGT 
TCACTTGGTGCTTCAGCACC 
GGTGCTGAAGCACCAAGTGA 

rnpB1F rnpB CGGGACGGGCAGACAGTCGC 
rnpB1R 
oVCU 332 
oVCU333 
oVCU365 
oVCU374 
oVCU412 
oVCU413 
oVCU414 
oVCU415 
oVCU484 
oVCU485 
oVCU486 
oVCU487 

rnpB 
tdfF RT-PCR Rev 
tdfF RT-PCR Fwd 
full length NdeI -tdfF Fwd 
full length tdfF-xho1 Rev 
NdeI-tdfF plug domain Fwd 
tdfF-xho1 plug domain Rev 
tdfF-NdeI loops 1-5 Fwd 
tdfF-xho1 loops 1-5 Rev 
mpeR RT-PCR Fwd 
mpeR RT-PCR Rev 
fetA RT-PCR Fwd 
fetA RT-PCR Rev 

GGACAGGCGGTAAGCCGGGTTC 
CGCCGTATTTGTTGCTGGCGTATTTGTAGC 
TTTGGAATACGACATCGCACCGCAAACC 
CATATGACACGCTTCAAATACTCCCTGCTT 
CTCGAGTTTAAACCGATAGGTAACGC 
CATATGCCGACCATCACCGTTACCGCC 
CTCGAGCTTGCGGGTCGGGTGTTTGCG 
CATATGCCATTGTTTGAAGTCCGCGCC 
CTCGAGGAGTATCAGCGAAACGTTGTC 
GCGTTTCCCACCGAAATCCACAAT 
AGCGTAATAATCGGGCGGAGAGTT 
AAAGATTACGAAGCCGGCAAAGGC 
TTCAACAGGGTTTGTTCGGCAAGG 

oVCU498 fetA-fetB Fwd CCAACGCTGCACCAATACCCTGC 
oVCU499 fetA-fetB Rev CCTTCAGCTTGTCGGCTTCCGCCTG 
oVCU500 fetB-NG2091 Fwd CAGGCGGAAGCCGACAAGCTGAACG 
oVCU501 fetB-NG2091 Rev GCACAGGCTGACGGCAAACAATACC 
oVCU513 NG2091-NG2090 Fwd GGTATTGTTTGCCGTCAGCCTGTCG 
oVCU516 NG2091-NG2090 Rev GCTCGCTCGGGACGGTATTGAATC 
oVCU515 NG2090-NG2089 Fwd GACTTTGTCTTGCACCTGCGCCTG 
oVCU518 NG2090-NG2089 Rev CAGTTCGCGGACGATGACGAACTG 
oVCU517 NG2089-NG2088 Fwd CTGTGCGGACATTCCTGCCCGAC 
oVCU553 NG2089-NG2088 Rev TGCTTTGGCAGAACACCATCGCAA 
oVCU110 16S rRNA Fwd TATCGGAACGTACCGGGTAGC 
oVCU111 16S rRNA Rev GTATTACCGCGGCTGCTGGCA 
oVCU529 fetA  qRT-PCR Fwd ATCCAACACCAATTTGGCGTA 
oVCU530 fetA qRT-PCR Rev CATCGGCGGAATAGCGTTT 
oVCU461 mpeR qRT-PCR Fwd TCTACCGCCAGTACCAAACC 
oVCU462 mpeR qRT-PCR Rev GGCTGAAATTGTGGATTTCG 
oVCU457 rmpM qRT-PCR Fwd GGAGCAGGCTCCTCAATATG 
oVCU458 rmpM qRT-PCR Rev TAAAGTCGGTATGGCCTTCG 
oVCU576 NG2091 qRT-PCR Fwd GTGAGCGTGAATTTGGGTTT 
oVCU577 NG2091 qRT-PCR Rev TATTGCCGACCGTTACAATG 
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oVCU629 
oVCU630 
oVCU676 

NG2090 sequencing Fwd  
NG2090 sequencing Rev 
fetB  primer extension  

AAACGCTGACCAACAACCCGATTC 
GCTTAATACCGCCTTCATGCCCAA 
CAG GGT CGG AAT TTT GCG GCG AAC AC 
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IV. Construction of expression plasmids  

The full length tdfF expression plasmid was constructed by PCR amplification of 

the tdfF gene from gonococcal strain FA1090 genomic DNA. The forward primer 

oVCU365 (CATATGACACGCTTCAAATACTCCCTGCTT) contained the NdeI site 

(bold) (Table 3) and amplified the tdfF native signal sequence.  The reverse primer, 

oVCU357 (CTCGAGTTTAAACCGATAGGTAACGC) contained the XhoI restriction 

site (bold) (Table 3) and encoded the terminal phenylalanine of tdfF from gonococcal 

strain FA1090.  The resultant PCR product was ligated into the TOPO pCR2.1 vector 

(InVitrogen) and transformed into competent E. coli strain TOP10 (InVitrogen). The 

transformants containing the correct plasmid, pVCU35,3 was screened for incorporation 

of the tdfF gene by restriction digest followed by agarose gel electrophoresis. After 

digestion with NdeI, and XhoI, the tdfF gene was purified from the agarose gel (Qiagen) 

and ligated into the pET-22b(+)  expression vector (Novagen).  The resultant plasmid, 

pVCU354, contained the full length tdfF gene under control of a T7 promoter, as well as 

a region encoding a 6X histidine tag immediately 3’ of tdfF.  For expression of 

recombinant TdfF, the plasmids were transformed into the E. coli expression strain 

BL21(DE3) (Novagen) which expresses T7 under the control of the lac promoter.  

The tdfF plug expression plasmid, pVCU355, was constructed by PCR 

amplification of the plug domain and excluded the signal sequence.  Forward primer 

oVCU412 (CATATGCCGACCATCACCGTTACCGCC) contained the NdeI site (bold) 

(Table 3) and amplified the FA1090 tdfF gene from the sequence that encodes amino acid 

P14 of the mature protein.  The reverse primer oVCU413 



www.manaraa.com

 

 

43

(CTCGAGCTTGCGGGTCGGGTGTTTGCG) contained an Xho1 site (bold) (Table 3) 

and amplified the plug domain from the sequence that encodes R166 of the mature 

sequence.  The PCR product was ligated into the TOPO pCR2.1 vector (InVitrogen) and 

transformed into competent E. coli strain TOP10 (InVitrogen). The transformants of the 

resulting plasmid pVCU358 were screened for incorporation of the tdfF gene by 

restriction digest followed by agarose gel electrophoresis. After digestion with NdeI and 

XhoI, the plug encoding portion of the gene was purified from the agarose gel (Qiagen) 

and ligated into the pET-22b(+)  expression vector (Novagen).  The resultant plasmid 

pVCU355, encoded recombinant TdfF plug in which a C-terminal histidine tag was fused 

to R166 of the mature protein. 

Similarly, the tdfF loops expression plasmid was constructed by amplifying the sequence 

that encodes the first half of the TdfF loop domain. The forward primer oVCU414 

(CATATGCCATTGTTTGAAGTCCGCGCC) encodes the NdeI site (bold) (Table 3) 

and amplified the FA1090 tdfF gene from the sequence that encodes P181 of the mature 

sequence.  The reverse primer oVCU415 (CTCGAGCTTGCGGGTCGGGTGTTTGCG) 

encodes an Xho1 site (bold) (Table 3) and amplified the sequence that encodes L680 of the 

mature sequence.  This PCR product was ligated into pCR2.1 vector (InVitrogen) and 

resulted in pVCU359. This plasmid was digested with Xho1 and NdeI, separated on an 

agarose gel by electrophoresis and the tdfF loops gene was purified from the agarose gel 

(Qiagen). The subsequent purified gene product was ligated into the pET22b(+) 

expression vector (Novagen) and resulted in pVCU357 in which tdfF loops were  

expressed with a 5’ histidine tag.   
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Both pVCU355 and pVCU 357 were transformed into the E. coli expression strain C41 

(DE3) (Avidis).  

V. Recombinant protein expression  

 For small scale induction of pVCU354, pVCU355, and pVCU357, starter 

cultures of E. coli (5 mls) were grown for approximately 6 hours at 37°C in Luria Bertani 

broth (LB) containing 1% glucose and 200µg/ml of carbenicillin before being stored 

overnight at 4°C.  1ml of the starter culture was used to inoculate 5 ml of LB broth 

containing 1% glucose and 200µg/ml carbenicillin. Cultures were shaken at 225rmp at 

37°C until they reached the OD600 .04-1.0, about 2 hours. For cultures that were induced, 

0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside) was added to induce recombinant 

protein expression. The induced and not induced cultures were grown for 4 hours. 

Following the 4 hour growth, 1 ml of culture was pelleted and solubilized with 2x 

laemelli solubilizing buffers for subsequent SDS-PAGE analysis.  

For large scale recombinant protein induction from plasmids pVCU354, 

pVCU355, and pVCU357 starter cultures of E. coli (5mls) were grown for approximately 

6 hours at 37°C in LB medium containing 1% glucose and 200 µg/ml of carbenicllin and 

stored at 4°C until used for large-scale growth and induction.  Prior to the large scale 

production, starter cultures were pelleted at 3200 X g for 5 minutes, and the supernants 

were decanted.   Fresh LB was added at original volume and the pellets were 

resuspended.  The resuspended starter cultures were inoculated into 1L of LB broth at pH 

7.5 containing 1% glucose and 500 µg/ml carbenicillin. The cultures were placed at 37°C 

with shaking at 225rpm until the OD600 reached 0.4-0.6. Cultures were then subjected to 

centrifugation (4°C for 15 min at 6000 X g) to pellet the bacteria. Supernants were 
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decanted and the pellet was resuspended in 1L of fresh LB containing 1% glucose and 

500 µg/ml carbenicillin.  0.5 mM IPTG (isopropyl-B-D-thiogalactopyranoside) was 

added to induce recombinant protein expression.  Cultures were grown overnight at 27°C 

(about 16hrs). Following inductions, cultures were pelleted at 6,000 X g for 15min and 

stored at -80°C.  

VI. Recombinant protein purification 

 For rTdfF plug and rTdfF loop domain purification, bacterial cell pellets were 

thawed on ice and cells were lysed under denaturing conditions with 8 mM urea buffer 

pH 6.3 ( 10mM NaH2PO4, 10 mM Tris-Cl, 8 mM urea). The solubalized rTdfF plug and 

rTdfF loops domain extracts were bound with nickel-nitriloacetic affinity resin (Qiagen) 

for at least 1 hour while shaking at room temperature. Following batch binding, the resin 

was loaded onto a disposable column and washed with 8mM urea buffer pH 6.3 (10 mM 

NaH2PO4, 10 mM Tris-Cl, 8 mM urea)  and eluted 4 times with 8mM urea buffer pH 5.9 

and 8 mM urea buffer pH4.5. The elutions were pooled together for each recombinant 

protein and dialyzed 2 times, overnight at 4°C, in 6 mM urea at pH 4.5 (NaH2PO4, 10 

mM Tris-Cl, 6 mM).  

VII. Coomassie blue protein staining 

 SDS-PAGE gels were stained with Coomassie blue (0.25% Coomassie R-250, 

50% methanol, 10% glacial acetic acid) following electrophoresis. Gel were incubated in 

Coomassie blue stain overnight at room temperature and then destained in 20% methanol 

and 5% glacial acetic acid at room temperature until background staining was minimized. 

Gels were dried in gel drying buffer (40% methanol, 10% glycerol, and 7.5% glacial 

acetic acid) over night.  
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VIII. Production of TdfF specific polyclonal rabbit sera 

 Purified rTdfF plug and rTdfF loops as described above were used to immunize 

rabbits. Each antigen was used to immunize two separate female New Zealand –SPF 

rabbits. Two rabbits designated F2522 and F2523 were immunized with rTdfF plug and 

two rabbits designated F2388 and F2389 were immunized with rTdfF loops domain. The 

rabbit immunization and bleed schedule was as follows, Day 0 pre-immune sera was 

collected and rabbits were initially immunized with rTdfF in Freund’s complete adjuvant. 

Day 14 and 28 rabbits received rTdfF boost and on day 35 and day 40 the rabbits were 

bled. Serum samples were screened by Western blot for specificity against rTdfF plug or 

rTdfF loops domain.  Immunizations and sera collections were done on a fee for serum 

basis by New England peptide.  

IX. Sequence Analysis  

To determine the sequence of FA19 and FA1090 ng2090, chromosomal DNA from each 

strain was used in a PCR amplification reaction in which the following primers were used 

to amplify the full length gene, oVCU629 and oVCU630. The resultant PCR product was 

ligated into the TOPO pCR2.1 vector (InVitrogen) competent E. coli strain TOP10 

(InVitrogen) were transformed with this construct resulting in plasmid oVCU364. The 

resultant plasmid was sequenced through the VCU Nucleic Acid Research Facilities 

using commercially available primers specific to TOPO pCR2.1.
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X.  Gentamicin protection assay 

Epithelial cells were seeded into 12-well plates and grown to 70-80% confluence 

in McCoy’s 5A media supplemented with 10% FBS. Prior to infection, gonococcal 

strains were maintained on GC agar plates supplemented with Kellogg’s Supplement 1 

(151) and 12 µM FeNO3 at 37°C in a 5% CO2 atmosphere. Piliated, gonococcal strains 

were harvested from GC plates and suspended in CDM (304). The infection inocula were 

prepared by diluting each strain in infection media containing McCoy’s 5A with 10% 

FBS and 24 µM FeNO3. Supplemental iron in the media promotes efficient growth and 

invasion. A multiplicity of infection (MOI) of 10 was maintained throughout the 

experiments. Epithelial cell monolayers were infected for 4 hours followed by a 

phosphate buffer saline (PBS) wash to remove any extracellular, non-adherent bacteria. 

Infected cells were then incubated in McCoy’s 5A and 10% FBS supplemented with 

25µg/ml gentamicin for 1 hour.  Gonococci are susceptible to gentamicin but the drug 

cannot be absorbed by the epithelial cells.   After 1 hour incubation, gentamicin was 

removed and cultures were washed twice with PBS. The time 0 cells were immediately 

lysed by treatment with saponin mix (PBS, 2 mM EDTA, 0.5% saponin) for 1 minute and 

then gonococci were diluted and plated for viable counts on GC agar plate.   The 24 hour 

time point cells were incubated in replication media which consists of McCoy’s 5A and 

10% FBS. One hour prior to the 24 hour time point, cells were washed with PBS, and 

treated a second time with gentamicin for 1 hour before being washed and plated as 

described above.  For assays in which the cells were serum starved, after the initial 4 hour 

incubation and gentamicin treatment, the replication media added back for the subsequent 

24 hour incubation contained McCoy’s 5A only.  When we tested the addition of 40 uM 
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apo-bovine transferrin, we added the apo-bovine transferrin to a replication media 

consisting of either McCoy’s 5A alone or McCoy’s 5A and 10% FBS.  When we 

incubated infected cells in the presence of ferritin degradation inhibitors, we incubated 

the cells in one of the following replication media: McCoy’s 5A and 10% FBS with 200 

µM ascorbate (Sigma), McCoy’s 5A and 10% FBS with 10µM leupeptin (Sigma), 

McCoy’s 5A and 200 µM ascorbate (Sigma), or McCoy’s 5A and 10 µM leupeptin 

(Sigma).   Each assay was conducted independently at least 3 times and data presented 

are the mean of 3 separate experiments.  

XI. Isolation of cell fractions containing membrane proteins 

 As described previously (64), gonococci were pelleted after large scale growth 

under iron-replete or iron-deplete conditions. Gonococcal cells were then resuspended in 

10 mM HEPES [4-(2-hydroxyethyl)-1-piper azine-ethanesulfonic acid] and passed 

through a French pressure cell once at 20,000 lb/in2.  Intact gonococcal cells were 

removed by centrifugation at 8,500 X g and membrane proteins were pelleted by 

centrifugation at 140,000 X g for 1h. Total membrane protein fractions were resuspended 

in 10mM HEPES and protein concentrations were determined by bicinchoninic acid 

assay (Pierce).   

XII. Separation of total membrane protein fractions and mass spectrometry analysis  

Membrane protein fractions, isolated as described above, were solubilized and 

proteins were separated on a 7.5% polyacrylamide gel. Proteins were visualized by 

Coomassie blue staining. One band of interest was extracted from the stained gel and 

submitted to the VCU Mass Spectrometry Resource Center for identification. The sample 

was digested overnight with trypsin and the resulting peptides were extracted. The 
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peptides were analyzed on a LC-MS system that consisted of a Thermo Electron Deca XP 

Plus mass spectrometer with a nanospray ion source interfaced with a reversed-phase 

capillary column. 

XIII. Immunodetection of FetA, TbpA and TdfF   

For detection of FetA in total membrane protein preparations, aliquots containing 

20µg of protein were resolved using SDS-PAGE.  For detection of FetA in whole cell 

lysates, gonococcal strains were grown in the presence of iron-containing catechols for 6 

hours; every 2 hours, aliquots were removed and standardized to culture density. Cells 

were pelleted and lysed with Laemmli solubilizing buffer (159) and stored at –20°C. 

Before use, 5% β-mercaptoethanol was added to all preparations prior to heating at 95°C 

for 3 minutes. After SDS-PAGE, proteins were electroblotted to nitrocellulose 

membranes in 20 mM Tris base, 150 mM glycine, and 20% methanol (284) within a 

submerged transfer apparatus (BioRad). For detection of FetA, membranes were blocked 

with 5% skim milk in low-salt TBS (LS-TBS). FetA blots were then probed with a FetA-

specific monoclonal antibody (44) and washed with LS-TBS, followed by a secondary 

goat anti-mouse antibody conjugated to alkaline phosphatase (BioRad). Blots were 

developed using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolylphosphate (Sigma). 

  For detection of TbpA in whole cell lysates, proteins were separated by SDS-

PAGE as described above, followed by electroblotting to nitrocellulose. Membranes were 

blocked with 5% bovine serum albumin (Roche) in high-salt Tris-buffered saline (TBS) 

plus 0.05% Tween 20 (Sigma). TbpA blots were then probed with a polyclonal, TbpA-

specific antiserum (67) and washed with high-salt TBS plus 0.05% Tween, followed by a 

secondary goat anti-rabbit antibody conjugated to alkaline phosphatase (BioRad). Blots 
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were developed using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolylphosphate 

(Sigma). 

To evaluate TdfF expression during infection, ME180 cells were inoculated with 

gonococcal strain FA1090 at an MOI 20.  After 4 hours, supernants were collected and 

pooled. Monolayers containing ME180 cells and gonococci were washed with PBS twice 

and treated with Saponin (PBS, 2 mM EDTA, 0.5% saponin); lysates were pooled  and 

vortexted.  Bacteria from the supernatant or cell-associated populations were pelleted by 

centrifugation at 5,000 x g for 10min at 4°C. The pellets were solubalized with Laemmli 

solubilizing buffer (159) and stored at –20°C. Before use, 5% β-mercaptoethanol was 

added to all preparations prior to heating at 95°C for 3 minutes. 

For gonococci incubated in different cell culture conditions, non-pilliated bacteria 

were resuspended to 100 klett unit in 1XCDM and added to the following media 

conditions: McCoy’s 5A with 10% FBS (replication media), replication media 

supplemented with 50µM epinephrine (Sigma), replication media supplemented with 50 

µM norepinephrineenephrine (Sigma), replication media supplemented with 50 µM 

human liver ferritin (Calbiochem), or McCoy’s 5A media alone for 4 hours before 

pelleted by centrifugation at 50000 X g. The pelleted bacteria were lysed with Laemmli 

solubilizing buffer (159) and stored at –20°C. Before use, 5% β-mercaptoethanol was 

added to all preparations prior to heating at 95°C for 3 minutes. For detection of TdfF in 

whole cell lysates, proteins were separated by SDS-PAGE as described above, followed 

by electroblotting on nitrocellulose. Membranes were blocked with 5% bovine serum 

albumin (Roche) in high-salt Tris-buffered saline (TBS) plus 0.05% Tween 20 (Sigma).  

TdfF blots were then probed with either polyclonal, TdfF plug or TdfF loop domain  
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specific antiserum (this study) and washed with high-salt TBS plus 0.05% Tween, 

followed by a secondary goat anti-rabbit antibody conjugated to alkaline phosphatase 

(BioRad). Blots were developed using nitroblue tetrazolium and 5-bromo-4-chloro-3-

indolylphosphate (Sigma). 

XIV. RNA isolation  

 For gonococcal strains grown in CDM under iron-deplete and iron-replete 

conditions as described above in bacterial growth conditions, after one mass doubling, 

12 μM FeNO3 (iron replete), or no additional iron (iron-deplete) was added and the 

cultures were grown for an additional 2 h.  

For gonococcal strains incubated in different cell culture media for tdfF detection, 

gonococci were incubated in the following media conditions: McCoy’s 5A with 10% 

FBS (replication media), replication media supplemented with 50 µM epinephrine 

(Sigma), replication media supplemented with and 50 µM norepinephrineenephrine 

(Sigma), replication media supplemented with 50µM human liver ferritin (Calbiochem), 

or McCoy’s 5A media alone for 4 hours before pelleted by centrifugation at 50000 X g 

Total RNA was isolated from cultures using the RNeasy mini kit as directed by 

the manufacturer (Qiagen). Purified RNA was treated twice with RNase-free DNase as 

directed by the manufacturer (Qiagen). SUPERase-In (Ambion) was added before storage 

at −80°C.  

XV. Qualitative reverse transcriptase PCR (RT-PCR)   

Portions of 16S rRNA, tdfF, fetA, mpeR, and intergenic regions between the fet 

genes were amplified using the Thermoscript RT-PCR system (InVitrogen) as described 

previously (113). A portion of this reaction was used as template for PCR amplification 

with Platinum Taq Polymerase (Invitogen) according to the manufacturer's protocol. 
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Oligonucleotide sequences of the primers used in this analysis are listed in Table 3.  After 

an initial denaturation step at 94°C for 3 min, DNA was amplified for 30 cycles. Each 

cycle consisted of 1 min at 94°C, 30 s at 60°C and 1.5 min at 72°C, followed by a final 

extension step of 10 min at 72°C. To detect any DNA contamination of RNA 

preparations, parallel RT-PCR reactions were conducted in the absence of reverse 

transcriptase. Amplicons resulting from the RT-PCR reactions were detected by ethidium 

bromide staining of agarose gels. 

XVI. Real time RT-PCR  

cDNA was generated by reverse transcription of 100 ng of total RNA using the 

Accuscript High Fidelity 1st strand cDNA synthesis Kit (Stratagene) according to the 

manufacturer’s protocol. Synthesized cDNA was used as PCR template.  The SensiMix 

SYBR No-ROX Kit (Bioline) and CFX96 Real Time System (BioRad) was employed for 

the real time RT-PCR reactions.  Oligonucleotide sequences of the primers used in this 

analysis are listed in Table 2.  The polar Ω insertion in fetA was located between the 

binding sites for the primers used to detect fetA expression; the aphA-3 cassette was 

located downstream of the primer binding sites for mpeR expression analysis.  The 

cDNA/SensiMix mixture was initially heated to 94°C for 10 min and subjected to 40 

cycles conducted under the following conditions: 95°C for 15 s, 60°C for 30 s, and 72°C 

for 30 s. Transcription of rmpM was employed as an internal control. For each 

experimental condition, fetA, mpeR, and ng2091 transcripts were normalized to rmpM 

levels. The relative CT method (179) was employed to compare normalized expression 

levels under different conditions.  Three biological replicates were analyzed, each 

conducted in triplicate. 
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XVII. Identification of fetB transcriptional start site by primer extension analysis 
performed in the laboratory of Dr. William Shafer  

In order to identify the fetB transcriptional start site, RNA was harvested from 

FA1090 grown under iron-replete or iron-deplete conditions as described above. The 

reverse primer, oVCU676 (Table 3), was radiolabeled with [ γ- 32P]  using T4 

polynucleotide kinase; 5μg of RNA was incubated with the radiolabeled primer and 

reverse transcriptase to generate the primer extension product.  In order to generate 

reference sequence products, plasmid pVCU366 (Table 2) was sequenced using the 

reverse primer, oVCU676, and the SequiTherm EXCEL II DNA Sequencing kit 

(Epicenter) as described previously (245). The sequencing template plasmid, pVCU366, 

was generated by amplification of wild-type FA1090 genomic DNA with the primers 

oVCU498 and oVCU499 (Table 3). The resulting amplicon contained the fetB promoter 

region and was cloned into pCR 2.1 (InVitrogen). Both the primer extension product and 

the reference sequence were subjected to electrophoresis on a 6% acrylamide sequencing 

gel, which was dried and subjected to autoradiography for visualization.  

XVIII. Electrophoretic mobility shift assay (EMSA) performed in the laboratory of 
Dr. William Shafer 

  MpeR was fused in-frame at its amino-terminus to the maltose-binding protein 

(MBP) using the pMal-c2x fusion vector (New England Biolabs).  For this purpose, the 

mpeR coding region was PCR-amplified from FA19 chromosomal DNA, isolated as 

described (186) using primers 5’ malEmpeRF and 3’ malEmpeRR (Table 3).   The 

resulting amplicon was purified using the QIAquick PCR purification kit (Qiagen).  Both 

the vector and PCR product were digested with PstI and BamHI (New England Biolabs) 

and ligated using T4 DNA Ligase (New England Biolabs). E. coli transformants 
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harboring the construct were selected on LB agar (Difco) plates containing 100μg/ml of 

ampicillin.  Both strands of the cloned insert were sequenced to ensure fidelity of the 

PCR amplification reaction and in-frame fusion with malE.  Growth of the E. coli 

transformant bearing the plasmid construct, induction of expression and purification of 

MBP-MpeR was performed as described previously for an MBP-MtrR fusion (164). 

For the EMSA studies, the 500 bp, intergenic region immediately upstream of the 

FetA start codon was PCR-amplified from FA1090 chromosomal DNA using primers 

5’fetAup and 3’fetAup (Table 2).  This upstream region was further divided into two 

smaller products by PCR amplification. The 5’fetAup and 3'fetAupint primers (Table 3) 

resulted in fetA1. The 5'fetAupint and 3'fetAup primers (Table 3) were used to amplify 

fetA2 region. These three PCR products was purified using the QIAquick PCR 

purification kit (Qiagen) and end-labeled with [ γ- 32P] (Perkin Elmer) and T4 

polynucleotide kinase (New England Biolabs). The radiolabeled PCR products were 

purified by excising the DNA from nondenaturing polyacrylamide gels, and recovered by 

crush-soak elution overnight at 37°C into 750 µl of PB buffer from the QIAquick PCR 

purification kit (Qiagen). The radiolabeled DNA/buffer mixture was centrifuged at 

15,800 X g for 10min and the resulting supernatant was removed and added to a 

QIAquick PCR purification kit (Qiagen) column, which was then washed with 750 µl PE 

buffer.  The DNA was eluted in 100 µl of nuclease-free water (Ambion). Five nanograms 

of each radiolabeled probe was incubated with 10 μg of MBP-MpeR for 30 minutes at 

room temperature.   
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The specificity of the MpeR-fetA promoter interaction was evaluated by adding either 

specific or non-specific, unlabeled competitor DNA to the binding reactions. The specific, 

unlabeled competitor DNA was generated by PCR amplification of the fetA1 promoter region as 

described above.  The fetA2 sequence was also amplified as described above and used as an 

unlabeled competitor. The non-specific competitor DNA was generated by PCR amplification of 

a portion of the rnpB gene using the primers rnpB1F and rnpB1R (Table 3). All binding 

reactions were incubated in DNA binding buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM DTT, 

1 μg/ml Poly dIdC) for 30 min. at room temperature. All samples were subjected to 

electrophoresis on a 5% (wt/vol) polyacrylamide gel at 4°C.  After electrophoresis, the gel was 

dried onto Whatman filter paper and exposed to X-ray film for autoradiography. 

XIX. Preparation of ferric-siderophores  

The siderophores used in this study were purchased from EMC Microcollections 

(Tübingen, Germany).  Siderophores were resuspended to a final concentration of 

1mg/ml in sterile deionized water and ferrated to 80% saturation using FeCl3 (273). In 

some experiments, the siderophores were purchased pre-ferrated and the lyophilized 

ferric-siderophores were dissolved in methanol (enterobactin) or water prior to final 

dilution in water. The results of the siderophore utilization assays were the same 

regardless of whether the siderophores were purchased in the ferrated state or ferrated 

immediately before use. The following is a list of the siderophores tested for growth 

support of gonococcal strain FA1090: ornibactin, aerobactin, ferrichrysin, ferrirubin, 

coprogen, neocoprogen, enterobactin, dihydroxybenzoylserine (DHBS) monomer, DHBS 

dimer, DHBS trimer, salmochelin S4, and salmochelin S2. Both  2,3-DHBA (Sigma) and 
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2,5-DHBA (Sigma) were resuspended to a final concentration of 1mg/ml in sterile 

deionized water and ferrated to 80% saturation using FeCl3(273).  

XX. Xenosiderophore utilization assays  

 Plate bioassays to evaluate xenosiderophore utilization were performed using 

CDM plates supplemented with 2.5 µM apo-bovine transferrin to chelate excess iron. As 

described previously (273) strains were inoculated onto plates using a sterile Dacron 

swab (Puritan). A sterile pipette was used to bore a well into the agar.  Subsequently, 

10µl of the diluted ferric-siderophore solution (100 μg/ml) was added to each well.  Ten 

microliters of apo-bovine transferrin at a concentration of 10mg/ml was used as a 

negative control and 10µl of ferric citrate (10µM) was used as a positive control.  Plates 

were incubated at 37°C in a 5% CO2 atmosphere for 24 hours and then evaluated for 

ferric-siderophore dependent growth.  

XXI. Statistical analyses  

 Statistical significance of xenosiderophore-dependent growth data was 

determined by using a two-tailed, unpaired Student’s t test.  P values for specific 

comparisons are reported in the figure legend.  For real time RT-PCR data (Table 4), the 

relative CT method (179) was utilized to calculate the fold change for each comparison. 

The range for each value is shown in parentheses. The average fold change values were 

calculated from three independently-conducted RT-PCR reactions and are representative 

of results generated from three independent RNA preparations (biological replicates). 

Statistical significance of intracellular survival was assessed by a Student’s T-test in 

which a P value < .01 and <.05 were considered significant.  

 
 



www.manaraa.com

 

 

57

 
 
 
 
 
 
 
 

 
 
 

Chapter 3 DETECTION OF THE EXPRESSION OF TONB -DEPENDENT 
TRANSPORTER, TdfF 

 
I. Introduction  

  Neisseria gonorrhoeae is a Gram negative diplococcous and the causative agent 

of the sexually transmitted infection, gonorrhea. To establish infection, gonococci need to 

acquire iron from the human host.  N. gonorrhoeae employs multiple TonB-dependent 

acquisition systems for the utilization of various host iron sources. All gonococcal strains 

express  the transferrin iron acquisition system composed of TbpA/TbpB (6, 62, 64) and 

50% of gonococcal isolates are capable of acquiring lactoferrin, a major iron source of 

mucosal secretions, through components of the LbpA/B system (5).  Gonococci acquire 

iron from hemoglobin as well; however, expression of the hemoglobin transporter system 

HpuA/B is subject to high frequency variation and most clinical and laboratory isolates 

do not express the receptor (52).  All of these iron sources are found outside the host 

epithelial cell. Iron is necessary for N. gonorrhoeae to establish its intracellular 

localization in vitro (113). TonB is also necessary for intracellular localization (113). 

TonB-dependent iron acquisition systems are necessary for intracellular survival of other 

microorganisms including Legionella pneumophila (102) and Shigella dysenteriae (241).   
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 Transport of iron into Gram negative microorganisms is initiated by the passage 

of iron across the outer membrane and into the periplasmic space.  Once in the periplasm, 

the iron is translocated into the cytoplasm.  TonB-dependent transporters are responsible 

for the transport of iron across the outer membrane. These transporters have a high 

affinity and specificity for their iron binding ligands.  TonB-dependent transport requires 

energy which is derived from the inner membrane proton motive force. TonB-dependent 

transporters (TBDTs) interact with an inner membrane complex consisting of 

TonB/ExbB/ExbD for energization (128).  The exact energy transduction pathway from 

TonB/ExbB/ExbD to the TBDT remains undefined (226). The first crystal structures of 

two Escherichia coli TBDTs, the ferrichrome transporter (FhuA) (86, 180) and the ferric 

enterobactin transporter (FepA) (39), revealed that these TDBTs consist of 2 structural 

domains, a 22-stranded β-barrel that spans the outer membrane and a plug domain folded 

into the barrel interior. The plug domain functions to occlude the barrel pore and to bind 

ligand at the extracellular side of the membrane as well as interact with the 

TonB/ExbB/ExbD complex at the periplasmic side of the outer membrane (290).  

 Since the sequencing of the gonococcal genome, multiple putative TonB-

dependent transporters have been identified. Three putative non-contiguous TonB-

dependent receptor genes tdfF, tdfG and tdfH were identified in strain FA1090 genome 

database using BLAST programs comparing amino acid sequences from a panel of 

characterized TonB-dependent receptors (286). Detailed comparisons of these putative 

transporters to known TonB-dependent transporters revealed extensive areas of 

homology within previously described conserved domains of TonB-dependent proteins 

(64, 145).  Such domains include the presence of a signal sequence which is necessary for 
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the transporter to be exported out of the cytoplasm. Once the protein is exported to the 

cytoplasm this signal sequence is cleaved. TonB-dependent transporters also contain a 

terminal phenylalanine residue which is important for outer membrane localization.  The 

N-terminal region of TonB-dependent transporters makes up the plug domain and the C-

terminus consists of membrane spanning domains which make up the β-barrel (64, 145, 

286).   

Previously, our laboratory investigated the role of the TonB system as well as 

TonB-dependent transporters in survival within cervical epithelial cells.  The Ton system 

is necessary for intracellular survival of gonococci within epithelial cells and has been 

demonstrated for N. meningitidis as well (161).  None of the previously characterized 

TonB-dependent transporters are necessary for intracellular survival; however, TdfF is 

required for survival (113).  The attenuated survival of the tdfF mutant is rescued with the 

addition of iron indicating that tdfF is important for intracellular iron acquisition (113).  

Additionally, tdfF expression is only detected when gonococci are incubated in the 

presence of cervical epithelial cells or cell culture media (McCoy’s 5A and 10% heat-

inactivated fetal bovine serum (FBS)) and not in bacterial growth media (113). 

Expression of tdfF is also detected during non-complicated infections of the female 

urogenital tracts (2) implying that tdfF expression is host/intracellular niche- specific.  

Understanding the regulation and inducing signal for tdfF expression could lead 

to the identification of the iron source utilized by intracellular gonococci. In numerous 

bacteria, gene expression for TBDTs involved in iron uptake, was regulated by the ferric 

uptake regulator (Fur) (166). In the presence of iron, Fur binds to a DNA sequence called 

the Fur box using Fe2+ as a cofactor and thereby represses expression of iron regulated 
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genes (13).  When iron is limiting, Fur cannot bind DNA, leading to derepression of 

genes that encode iron transporters (13).  tdfF contains a putative Fur box (113). Iron 

levels may not be the only signal for tdfF expression as tdfF expression is not detected in 

bacterial growth media under iron-deplete conditions and is only detected when 

gonococci are incubated in epithelial cell culture conditions (113). These results indicate 

that the inducing signal for tdfF expression could also be a ligand responsible for a 

regulatory cascade that signaled that the bacteria were associated with or intracellular to 

epithelial cells.  

 In this study we investigated potential proteins and molecules that could up-

regulate tdfF expression.  We detected tdfF expression in the presence of heat-inactivated 

fetal bovine serum (FBS) but did not determine the specific component of serum 

responsible for induction of tdfF expression.  We identified tdfF in all laboratory isolates 

of N. gonorrhoeae and determined that the gene sequence was identical amongst all 

gonococcal strains sequenced.  Additionally, we expressed and purified rTdfF plug and 

rTdfF loop domains from E. coli successfully.  These recombinant proteins were used to 

synthesize rabbit polyclonal anti-TdfF sera for detection assays.  

 

II. Results 

A. TdfF sequence is identical in gonococcal laboratory strains  

 Since TdfF is crucial for intracellular survival in wild type gonococcal strain 

FA1090 we wanted to determine if other laboratory strains contained this gene. We were 

also interested in the nucleotide sequence of this transporter because the gene may be 

present in all strains but inactivated. For example, not all gonococcal strains express the 
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genes that encode the TonB-dependent lactoferrin acquisition system LbpA/LbpB due to 

a deletion removing the lbpB gene and a portion of the lbpA gene (5).  To determine the 

presence and nucleotide sequence of tdfF from multiple strains, we proceeded to 

sequence the portion of tdfF that encodes the plug and half of the β-barrel domain that we 

will proceed to call loop domain for the rest of this study from a variety of gonococcal 

strains. Using FA1090-specific tdfF primers we amplified the plug and loop domains 

from strains FA19, MS11, UU108 and compared these sequences to strain FA1090. We 

aligned the nucleotide sequence from each gonococcal isolate and determined they were 

identical in all of the gonococcal strains investigated. We also translated the nucleotide 

sequence and observed identical amino acid sequences (Figure 4). Since this study, other 

gonococcal and meningococcal strains have been sequenced, and tdfF has been identified 

as pathogen-specific gene (184, 266) indicating it is important in pathogenicity. We have 

since aligned TdfF from all sequenced gonococcal strains and observed that they shared 

100% sequence identity. The identical sequences imply that the substrate acquired by 

tdfF is only expressed in the intracellular environment away from any immune pressures 

that would select for antigenic diversity.    
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Figure 4. Sequence alignments of the plug and loop domain of TdfF  
 
Panel A) Amino acid sequence alignment of loops 1-5 from FA1090,  FA19, MS11, and 
UU108.   
 
Panel B) Amino acid sequence alignment of the plug domain of TdfF from FA1090, 
FA19, MS11, and UU108. The MS11, FA19, and UU108 sequences, determined as part 
of this study.  Gray shading with black font indicates 100% identical sequence. Primer 
sequence excluded from this analysis.  
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     1                                                                                                                                    50 

  FA1090   HFGLGADVSGSLNAEGTLRGRLVSTFGRGDSWRQLERSRDAELYGILEYD 
  FA19       HFGLGADVSGSLNAEGTLRGRLVSTFGRGDSWRQLERSRDAELYGILEYD 
  MS11      HFGLGADVSGSLNAEGTLRGRLVSTFGRGDSWRQLERSRDAELYGILEYD 
  UU108    HFGLGADVSGSLNAEGTLRGRLVSTFGRGDSWRQLERSRDAELYGILEYD 
                 
                   51                                                                                                                                   100 
   FA1090  IAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAFGPKDNPATNWSN 
   FA19      IAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAFGPKDNPATNWSN 
   MS11     IAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAFGPKDNPATNWSN 
   UU108   IAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAFGPKDNPATNWSN 
                  
                  101                                                                                                                              150 
   FA1090  SRNRALNLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHSTA 
   FA19      SRNRALNLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHSTA 
   MS11     SRNRALNLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHSTA 
   UU108   SRNRALNLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHSTA 
                 
                   151                                                                                                                              200 
   FA1090  ATDLIPGYWHADPRTHSASMSLTGKYRLFGREHDLIAGINGYKYASNKYG 
   FA19      ATDLIPGYWHADPRTHSASMSLTGKYRLFGREHDLIAGINGYKYASNKYG 
   MS11     ATDLIPGYWHADPRTHSASMSLTGKYRLFGREHDLIAGINGYKYASNKYG 
   UU108   ATDLIPGYWHADPRTHSASMSLTGKYRLFGREHDLIAGINGYKYASNKYG 
                 
                    201                                                                                                          246 
   FA1090  ERSIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRRQIGGYLAT 
   FA19      ERSIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRRQIGGYLAT 
   MS11     ERSIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRRQIGGYLAT 
   UU108   ERSIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRRQIGGYLAT 
 
 
 
 
                  1                                                                                                                                  50 
   FA1090 DGYTVSGTHTPFGLPMTLREIPQSVSVITSQQMRDQNIKTLDRALLQATG 
   FA19     DGYTVSGTHTPFGLPMTLREIPQSVSVITSQQMRDQNIKTLDRALLQATG 
   MS11    DGYTVSGTHTPFGLPMTLREIPQSVSVITSQQMRDQNIKTLDRALLQATG 
   UU108  DGYTVSGTHTPFGLPMTLREIPQSVSVITSQQMRDQNIKTLDRALLQATG 
                 
                  51                                                                                                                             100 
   FA1090 TSRQIYGSDRAGYNYLFARGSRIANYQINGIPVADALADTGNANTAAYER 
   FA19     TSRQIYGSDRAGYNYLFARGSRIANYQINGIPVADALADTGNANTAAYER 
   MS11    TSRQIYGSDRAGYNYLFARGSRIANYQINGIPVADALADTGNANTAAYER 
   UU108  TSRQIYGSDRAGYNYLFARGSRIANYQINGIPVADALADTGNANTAAYER 
                  
                 101                                  116 
   FA1090 VEVVRGVAGLPDGTGE 
   FA19     VEVVRGVAGLPDGTGE 
   MS11    VEVVRGVAGLPDGTGE 
   UU108  VEVVRGVAGLPDGTGE 
 

A 

B 
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B. TdfF topology model 

Nearly all Gram-negative bacteria have TonB-dependent transporters involved in 

the uptake of nutrients such as iron, vitamin B12, nickel, carbohydrates, and probably 

other substrates (255). TonB-dependent transporters share a common topology based on 

twelve different TonB-dependent transporters that have been crystallized to date (206). 

They all share two characteristic domains: a β-barrel comprised of 22 amphipathic β-

strands, and a globular plug domain that is folded up inside the barrel (56, 206). The 

topology of TdfF was determined with the online protein homology analog recognition 

engine (PHYRE) (149). We analyzed the TdfF amino acid sequence from gonococcal 

strain FA1090. FpvA, was selected as the biological template structure for the TdfF 

topology model by PHYRE.  FpvA is  the outer membrane transporter required for iron 

acquisition via the siderophore pyoverdine in Pseudomonas aeruginosa. FpvA, like other 

ferrisiderophore transporters, consisted of a membrane-spanning β-barrel occluded by a 

plug domain (254). FpvA had 29.15% sequence identity to TdfF. The predicted structure 

of TdfF was consistent with the structure of characterized TonB-dependent transporters 

(Figure 5A). Consistent with the previously crystallized TonB-dependent transporters 

(206) TdfF contained a β-barrel and plug domain (Figure 5A). It was predicted that 11 

outer membrane loops extend from the β-barrel and could be surface exposed (Figure 

5B).   
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Figure 5. TdfF topology model  
A) Ribbon diagram of TdfF generated using the online protein homology analog 
recognition engine (PHYRE) (149). The three dimensional model was synthesized using 
FpvA as the biological template structure and shows a lateral view in which the 
characteristic β-barrel structure can be observed.  A bird’s eye view from the top of TdfF 
looking into the β-barrel shows the globular plug domain. The protein secondary 
structures are indicated by color: yellow indicates β-sheets, magenta indicates α-helices, 
and blue represents turns.   
 
B)   TdfF two-dimensional topology generated based on characteristic structures of 
TonB-dependent transporters. TdfF has two distinct domains: the C-terminal β-barrel 
domain which is shown in yellow with 22 putative β-strand transmembrane domains and 
eleven putative extracellular loops.  The loops are labeled 1-11. The N-terminal plug 
domain is show in the periplasm but is predicted to fold up into the β-barrel.  The plug 
and loops 1-5 were sequenced from all available gonococcal laboratory strains.  OM 
indicates outer membrane.
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C. Fetal bovine serum induces tdfF expression  

 Gene regulation is essential for microorganisms as it increases versatility and 

adaptability by allowing the cell to express proteins when appropriate. When initially 

identified, tdfF expression was not detected from gonococci grown in bacterial growth 

media (286).  Our laboratory demonstrated that tdfF transcription is detected only when 

gonococci are incubated in the presence of cervical epithelial cells (113).  Bacteria that 

are adhered to or within cervical epithelial cells have increased tdfF transcript levels 

compared to gonococci isolated from the infection supernatant (113). Similar to previous 

work we demonstrated that tdfF expression is not detected in the presence of bacterial 

growth media (113). Additionally, microarray analysis of gonococci isolated from 

women with uncomplicated infections indicated an increase in tdfF expression (2) 

suggesting that the gene is expressed more highly within the host.   

A putative Fur box has been identified in the hypothetical -10 region of the tdfF 

promoter (113). When gonococci are incubated in bacterial growth media under iron-

deplete conditions, tdfF transcript is not detected (113)  suggesting that tdfF  expression 

is not only regulated by Fur, but that another regulator and inducing signal from 

eukaryotic cells and/or the cell culture media supplemented with FBS is necessary for 

gene expression. To determine if the inducing signal for tdfF expression is derived from 

epithelial cells or cell culture media we separated the components involved in cell culture 

and investigated tdfF transcript levels when gonococci were incubated in these 

components. 

 Cell culture media consists of McCoy’s 5A media and 10% heat-inactivated fetal 

bovine serum. McCoy’s 5A media was originally synthesized to support the amino acid 
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requirements for in vitro cell cultivation. Hsu and Kellogg employed this medium to 

support the growth of primary cultures derived from multiple tissue samples (135) It was 

purchased as a sterile liquid media and in addition to amino acids contained sodium 

bicarbonate and L-glutamine.   Fetal bovine serum (FBS) is the most widely used growth 

supplement for cell culture media because of its high content of embryonic growth 

promoting factors. When used at appropriate concentrations it supplies many defined and 

undefined components that satisfy specific metabolic requirements for the culture of cells.  

Some of the defined components of serum included albumin, alpha-, beta-, and gamma-

globulins (210) as well as bovine transferrin, ferritin, hormones, lipids, and growth 

factors. 

We assessed tdfF expression through qualitative RT-PCR in which we incubated 

gonococcal strain FA1090 in either McCoy’s 5A media alone or McCoy’s 5A and 10% 

FBS for 4 hours.  After the incubation, RNA was isolated from the bacteria and RT-PCR 

was performed.  We probed for tdfF expression and used 16S rRNA expression as a 

control because it was constitutively expressed under all conditions tested.  We detected 

increased tdfF specific transcript when the bacteria were incubated in the presence of 

McCoy’s 5A and 10% FBS compared to gonococci incubated McCoy’s 5A alone, 

(Figure 6). There are two possible explanations for these results. One is that a serum 

derived component was responsible for inducing tdfF expression. If a serum component 

was responsible for the induction of tdfF expression then we should be able to define the 

serum component responsible for increased transcript.  We incubated gonococci in 

different serum components such as the iron binding protein ferritin, and the hormones 

norepinephrine and epinephrine which have been shown to induce the expression of a 
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TonB-dependent transporter in B. pertsussis (7). After 4 hour incubation in McCoy’s 5A 

supplemented with these different serum components tdfF expression was examined by 

RT-PCR.  We did not detect tdfF when gonococci were incubated in these conditions 

(data not shown). We also isolated RNA from gonococci incubated in defined serum 

(Hyclone) and performed RT-PCR.  Defined serum is commercially available and all the 

components in this serum have been identified.  Transcript of tdfF was not detected using 

qualitative RT-PCR when gonococci were incubated in the defined serum (data not 

shown).  These results indicate an undefined serum component is responsible for tdfF 

expression.  

Another possible explanation from these results is that the tdfF expression 

observed was modulated by iron availability.  The presence of FBS chelates any excess 

iron in the McCoy’s 5A, and this iron chelation was derepressing tdfF transcript through 

Fur.  N. gonorrhoeae cannot utilize bovine transferrin, (263) which is the major iron 

source in FBS and it is also demonstrated that gonococci cannot multiply in cell culture 

media (McCoy’s 5A and 10% FBS) (113). McCoy’s 5A  is not an iron chelated media 

and any available iron would be utilized by gonococci and cause Fur to repress tdfF.  In 

the presence of FBS, the bovine transferrin would chelate any iron away from gonococci 

making the media more iron deplete in which Fur would no longer repress tdfF. The 

addition of norepinephrine or epinephrine in McCoy’s 5A alone would not decrease free 

iron from the media hence the lack of tdfF transcript detected.  It was previously 

demonstrated that when gonococci are incubated in cell culture media supplemented with 

iron, tdfF transcript is not detected; however, tdfF is expressed in cell culture media in 
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the absence of the supplemented iron (113).  Therefore tdfF expression could be 

modulated by both iron availability and a serum specific molecule or molecules.  
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Figure 6. tdfF transcript levels detected in the presence of fetal bovine serum   
Wild type strain (FA1090) was incubated in the presence of McCoy’s 5A + 10% heat-
inactivated FBS (+) or in McCoy’s 5A alone. tdfF specific transcripts were assayed by 
RT-PCR. 16S rRNA was used as a positive control because it was constitutively 
expressed under all growth conditions. Expression of 16S rRNA in the absence of reverse 
transcriptase, (16S rRNA-RT was used as a negative control.  
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D. Expression and Isolation of rTdfF 

TdfF is predicted to be a 78kDa outer membrane protein that is only expressed 

when gonococci are incubated in cell culture conditions in the absence of additional iron 

(Hagen, 2006 #143; Turner, 2001 #221).  As another means for tdfF detection, we chose 

to generate a polyclonal TdfF specific antisera, which necessitated purification of rTdfF 

for subsequent immunoblot assays.  

We utilized the pET vector (Novagen) which is a bacterial plasmid designed to 

enable the production of a large quantity of any desired protein. The tdfF gene was 

cloned into this vector and was expressed under the control of the IPTG inducible T7 

promoter.  We chose to clone full length tdfF into the pET vector pET-22b(+) (Novagen) 

which encoded ampicillin resistance, a C-terminal histidine tag and a T7lac promoter. A 

lac operator sequence was just downstream of the T7 promoter within the plasmid, and 

this plasmid also carried the lac repressor (lacI) which repressed the expression of the T7 

RNA polymerase in the host cell. The addition of isopropyl-β-D-thiogalactopyranoside  

(IPTG) induced T7 RNA polymerase production within the host cell, which in turn 

transcribed the target DNA in the pET plasmid.   

pVCU354 (pET-22b(+)tdfF) was transformed into E. coli strain BL21(DE3) 

because this strain was the most widely used host for target gene expression.  A single 

colony from the transformation was grown overnight and this culture was split and used 

as a stock to grow two parallel cultures. Once the cultures grew to an OD600 of 2.5, IPTG 

was added to one culture and nothing was added to the other culture which was used as a 

control. The cultures were grown for an additional 4 hours.  We observed an initial 

increase and then decrease in OD600 readings in our induced culture throughout the 4 hour 
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induction. Whereas, the uninduced culture continued to increase in optical density over 

the 4 hour growth period.  Protein production was monitored in the two cultures with the 

use of Coomassie stained SDS-PAGE analysis, we expected that if rTdfF was produced 

then a dark band around 80kDa would be observed in whole cell lysates from the induced 

culture compared to the uninduced culture.  There was no difference in protein banding 

pattern between the two cultures. Western blot analysis was also performed on whole cell 

lysates isolated from both cultures and the blots were probed with anti-histidine tag 

antibody. If rTdfF was expressed we would expect the C-terminal histidine tag to interact 

with the anti-histidine antibody.   rTdfF was not detected from either culture on these 

blots by the histidine specific antibody.   All together, these data indicate that the 

expression of full length tdfF in E. coli could be toxic to the bacteria or expression is not 

occurring due to insufficient tRNA pools.   

 Most amino acids are encoded by more than one codon, and each organism carries 

its own bias in the usage of the 61 available amino acid codons.  When the mRNA of 

heterologous target genes is over expressed in E. coli, differences in codon usage can 

impede translation due to the demand for one tRNA that may be rare or lacking in the 

population.  Insufficient tRNA pools can lead to translational stalling, premature 

translation termination or frame shifting (147, 158). The amino acid content of TdfF 

consisted of 27 prolines encoded by the sequence CCC which was considered a rarely 

used codon by E. coli.  These codons were found in the N-terminus of TdfF and could 

lead to premature termination of translation.  To enhance rTdfF expression in E. coli we 

transformed pVCU354 plasmid into Rosetta strain (Novagen) which expressed rare 

codons. IPTG induction of TdfF in the Rosetta cultures resulted in a very slight increase 



www.manaraa.com

 

 

75

in OD600 compared to the uninduced cultures over a 4 hour growth period. When proteins 

from whole cell lysates isolated from the two cultures were separated by SDS-PAGE, 

Coomassie staining of this gel indicated no difference in protein banding pattern between 

the two cultures.  Also, western blot analysis in which anti-histidine antibodies were used 

to probe for rTdfF expression did not detect an 80kDa protein.  The lack of growth and 

rTdfF expression in this system indicated that full length TdfF was toxic to the E. coli. 

 Since it was difficult to express full length rTdfF in the pET expression system we 

attempted to express portions of the transporter.  The signal sequence was removed from 

the N-terminal sequence of tdfF which would prevent transport of the protein out of the 

cytoplasm and could improve protein yield and E. coli viability.  The sequences encoding 

the plug domain or portion of the β-barrel, now called loop domain, were cloned into 

pET-22b(+) (Figure 4B) to generate the subsequent plasmids pVCU355 and pVCU357 

respectively.  The plasmid constructs were transformed into E. coli strain C41. The strain 

C41 was derived from BL21 (DE3) and had at least one uncharacterized mutation, which 

prevented cell death associated with the expression of toxic recombinant proteins (199). 

This E. coli strain was effective in over expressing toxic proteins from all classes of 

organisms, eubacteria, archaea, yeast, plant and mammals and therefore was expected to 

successfully produce portions of TdfF (199). The E. coli strain C41 containing either 

pVCU355 or pVCU357 were grown to an OD600 of 2.5 and then one culture was induced 

with IPTG and the other remained uninduced for an additional 4 hours. Similar levels of 

increased optical density were observed for the induced cultures, compared to the 

uninduced strains indicating that the induced cultures were viable.   Whole cell lysates 

were isolated from the induced and non-induced E. coli strains and separated by SDS-
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PAGE. A protein of the predicted size of 15kDa was identified by Coomassie stained 

SDS-PAGE from the IPTG induced plug expressing strain (Figure 7A).  Additionally, 

histidine tag specific antibodies detected a protein of 15kDa expressed by the IPTG 

induced culture via Western blot analysis (Figure 7B).   Similarly, the loop domain which 

was predicted to be 27kDa was detected in the induced cultures through Coomassie 

stained SDS-PAGE analysis (Figure 7A) and anti-histidine antibodies detected a 27 kDa 

protein by Western blot analysis. A smaller species between 15kD and 20kD was 

detected by the anti-histidine antibody in lysates expressing rTdfF loops.  This could be a 

break down product or smaller protein expressed by the E. coli (Figure 7B). Both 

recombinant proteins were insoluble and purified using denaturing conditions and a 

histidine column. A stepwise dialysis was conducted to increase the pH of the solution in 

which the proteins were eluted.   
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Figure 7. Expression of rTdfFplug and rTdfF loops  
 
A) Coomassie blue stained SDS-PAGE containing proteins from E. coli expressing  
rTdfF protein.  Lanes contain solubalized E. coli lysates that express either pVCU355 or 
pVCU357 induced with IPTG (I) or uninduced (NI) for 4 hours.  Proteins were separated 
on a 15% acrylamide gel.  The arrows on the left indicate the band of rTdfF expression. 
The position of molecular weight markers is indicated on the left.  
 
B) Western blot analysis of the solubalized E. coli lyates that express either rTdfF plug or 
rTdfF loops grown in the presence of IPTG (I) or no IPTG (NI) for 4 hours.  Proteins 
were separated on a 15% acrylamide gel. Blots were probed with an anti-histidine 
antibody.   
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E. Anti-TdfF rabbit polyclonal serum detects rTdfF  

 Antibodies recognize their target with high specificity and generally bind with a 

very high affinity, within the nano/picomolar range to their target (249). Polyclonal anti-

TdfF antibodies were generated in rabbits against the rTdfF plug and rTdfF loops for 

analysis of TdfF expression.  Recombinant proteins were sent to New England Peptide 

antibody program where female New Zealand Rabbits were immunized with rTdfF plug 

or rTdfF loops. Sera were collected 35 and 40 days after the primary boost.  We 

determined the specificity of rabbit sera against the recombinant proteins and optimal 

dilutions for the sera for future detection assays.  The anti-TdfF sera detected rTdfF from 

whole cell lysates isolated from induced E. coli cultures (Figure 8). The anti-TdfF plug 

sera detected rTdfF plug from induced E. coli cultures and anti-rTdfF loops detected 

rTdfF loops from induced E. coli strains (Figure 8).  As expected, the anti-TdfF plug and 

anti-TdfF loops sera also detected their corresponding purified rTdfF proteins (Figure 9).  
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Figure 8. Polyclonal α-TdfF detects rTdfF  
Western blot analysis of the solubalized E. coli lyates that express rTdfF.  Blot 1 
expresses rTdfF plug and blot 2 expresses rTdfF loops induced with IPTG (I) or 
uninduced (NI) for 4 hours.  Proteins were separated on a 15% acrylamide gel. Blot 1 was 
probed with rabbit polyclonal α-TdfF plug and blot 2 was probed with rabbit polyclonal 
α-TdfF loops sera as indicated below each blot. An arrow designates detection rTdfF 
protein by α-TdfF sera 
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 Both plug and loop specific anti-TdfF sera were utilized for analysis of TdfF 

expression in gonococcal strain FA1090. We first performed assays in which tdfF 

expression was observed, in which gonococci were incubated in the presence of cervical 

epithelial cells. We used gonococcal strain FA1090 and tdfF mutant strain (MCV659) as 

our negative control in these TdfF detection assays. Gonococci were incubated with 

cervical epithelial cells for 4 hours. After the 4 hour incubation the cell associated 

bacteria and supernant associated bacteria were separated and solubilized. Gonococcal 

protein expression was analyzed by immunoblotting and the blots were probed with anti-

TdfF sera. TdfF expression was not detected in the wild type strain (FA1090) (Figure 9) 

under these incubation conditions.  As expected, TdfF was not detected in proteins 

isolated from the tdfF mutant strain (MCV659). We also incubated wild type gonococcal 

strain FA1090 and tdfF mutant strain (MCV659) in various serum components for 4 

hours. After the 4 hour incubation gonococci were solubilized and immunoblot analysis 

was used to determine TdfF expression.  Ferritin, a potential intracellular iron source, and 

hormones such as norepinephrineeniphrine and epinephrine were added to the McCoy’s 

5A media individually.  None of these components induced detectable TdfF expression 

(data not shown).  In all our assays the anti-TdfF sera detected purified rTdfF loop 

domain,  rTdfF plug domain (Figure 9) or whole cell lysates from C41 expressing the 

rTdfF proteins which were employed as positive controls (Figure 8). There could be 

many reasons why we do not detect TdfF expression from these assays.  One possible 

explanation for the lack of TdfF detection by α-TdfF sera was that proteins from cell 

culture media or epithelial cell were blocking antibody detection.  TdfF detection was 

expected to be between 70 kDa and 100 kDa based on the predicted molecular weight. 
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There was a lack of protein detection in this area and that could be due to steric hindrance 

of antibody binding by the serum specific protein (Figure 9). One such protein could be 

bovine albumin which is abundant in bovine serum and has a molecular weight around 70 

kDa. This phenomenon occurred in both the wild type and tdfF mutant strain (MCV659) 

indicating we were observing a non-specific interaction.   

The lack of TdfF detection could also be due to a lack of TdfF expression by 

gonococci.  Based on our previous observations TdfF expression is greatest in the 

presence of cell culture media in the absence of additional iron (113). We observed very 

low levels of TdfF transcript when gonococci were incubated in cell culture media alone.  

The FBS may not be chelating all the iron in McCoy’s 5 media making it iron-replete. 

Then gonococci would be able to obtain this iron and tdfF expression would be repressed 

by Fur.  Also, lots of FBS vary, and the particular lot used for these experiments could 

lack a co-inducing signal necessary for TdfF expression hence the lack of TdfF detected 

in these assays.   

Finally, western blot analysis is not as sensitive as qualitative RT-PCR.  TdfF 

could be expressed but in very low levels under these conditions.  We attempted to detect 

TdfF from solubilized whole cell lysates which contain proteins from the outer 

membrane, inner membrane, and cytoplasm. With all these proteins separated by SDS-

PAGE other TonB-dependent transporters as well as other proteins with a similar 

molecular weight to TdfF could migrate to the same part of the gel as TdfF and prevent 

TdfF detection.  One way to enrich for TdfF would be to isolate outer membrane proteins 

from gonococci incubated under cell culture conditions.  
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Figure 9.  Western blot analysis of TdfF expression  
Western blot analysis of whole cell lysates probed with α-TdfF plug or α-TdfF loops as 
indicated above each blot. Lane 1 contains whole cell lysates isolated from gonococcal 
wild type strain (FA1090) adherent/intracellular with ME180 cells. Lane 2 contains 
whole cell lysates isolated from tdfF mutant strain (MCV659) adherent/intracellular with 
ME180 cells. Lane 3 contains purified rTdfF protein that corresponds with the α-rTdfF 
sera that was used to probe the blot.  Poncceau stain below each blot indicates equal 
loading of protein for each lane. 
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III. Discussion 

Gonococcal infections require that the bacteria circumvent the innate iron-

withholding mechanisms employed by the human host. Epithelial cells obtain iron from 

ferrated transferrin from the serum via receptor-mediated endocytosis (224). The low pH 

of transferrin-containing endosomes facilitates the release of iron from transferrin and is 

then transported out of the endosome to the cytosol (224).  Epithelial cells respond to 

Neisseria infection by reducing transferrin receptor gene expression and transferrin 

receptor cycling thus further limiting host iron availability (32). It was hypothesized that 

gonococcal strain FA1090 utilized iron sources within the epithelial cell through the 

TonB-dependent transporter TdfF (113).  Understanding how tdfF gene expression is 

induced may lead to the identification of the specific ligand for TdfF as well as elucidate 

new mechanisms of intracellular pathogenesis.  

We first wanted to determine if other gonococcal genomes contained the tdfF 

gene.  This TonB-dependent transporter is crucial for intracellular survival in gonococcal 

strain FA1090 (113); however, other gonococcal strains have exhibited Ton-independent 

survival  in the presence of a strain specific gonococcal genetic island (317).  Gonococcal 

strain FA1090 does not possess this gonococcal genetic island indicating that TdfF-

dependent survival could be FA1090 specific and other strains may not encode for this 

TonB-dependent transporter.   We analyzed common gonococcal laboratory strains for 

tdfF through PCR and sequence analysis.  Using FA1090 specific tdfF primers, we 

amplified the plug and loop domains from strains FA19, MS11 and UU108 and compared 

these sequences to strain FA1090.  Gonococcal strains FA1090 and FA19 were isolated 

from patients with disseminated gonococcal infections (DGI) as well as localized 
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infection. Strain MS11 was isolated from a localized infection and both FA19 and MS11 

posses the before mentioned genetic island.  All four laboratory isolates contain full 

length tdfF. Since our investigation the Broad Institute has sequenced many more 

gonococcal isolates and recently, tdfF was identified as a pathogen specific gene (184, 

266).   

All gonococcal strains sequenced to date have tdfF sequences that are 100% 

identical.  Since strains that contain a GGI also contain full length tdfF, then perhaps in 

the presence of a functional Ton system TdfF is employed for intracellular survival and 

the GGI is employed only if the Ton system is no longer functional. Also, the lack of 

sequence diversity between the eleven putative outer membrane loops may indicate a lack 

of immune pressure and support data that tdfF expression only occurs in the intracellular 

environment.  The transferrin receptor, TbpA isresponsible for acquisition of iron from 

the serum, human iron binding protein, transferrin (63).  In TonB-dependent transporters 

that acquire iron from the extracellular environment it is common to observe sequence 

diversity amongst surface exposed loops. When comparing TbpA sequence amongst 

gonococcal isolates, both antigenic and sequence diversity was identified in 

hypervariable regions (62). These regions are surface exposed loops on the TonB-

dependent transporter (312). It is possible that the intracellular niche would protect 

gonococci from the immune system and thus sequence diversity of the loops domain 

would be unnecessary.  The lack of sequence diversity could also indicate a lack of 

immunogenicity by TdfF. This could explain the difficulty in detecting TdfF by 

immunoblot.  
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We attempted to express full length rTdfF in E. coli for purification and 

subsequent immunization to generate rTdfF anti-sera.  We could not express full length 

rTdfF due to multiple complications. It seems that full length TdfF was toxic to the E. 

coli induced to express this protein as we observed a lack of growth in these cultures. 

Even after addressing the possibility that TdfF employed a rarely used codon to encode 

27 proline residues we still could not express full length rTdfF. This was not the first 

report in which expression of a Neisserial outer membrane protein (OMP) was found to 

be lethal to E. coli (106).  

OMPs are synthesized with a signal sequence and are translocated through the 

inner membrane by the SecA/Y/E/G export machinery in an unfolded form and in a 

process that requires energy in the form of ATP (96, 278). Once the protein has arrived in 

the periplasmic space, the signal sequence is removed by a signal peptidase (96, 278). 

The later stages in OMP biogenesis such as transport through the periplasm and assembly 

into the OM, are much less well understood. It has been demonstrated that the acquisition 

of tertiary structure proceeds, at least partially, the insertion of the proteins into the OM 

(81). Recent studies have led to the identification of Omp85 in Neisseria which is 

involved in the insertion and assembly of OMPs. Omp85 homolog has been identified in 

all Gram-negative bacteria studied (297) and the E. coli homolog, which is encoded by 

the yaeT gene, was demonstrated to be essential and required for OMP biogenesis (77, 

302). Interestingly, the outer membrane porin, PorA, from N. meningitidis does not 

stimulate the assembly or transport activity of E. coli Omp85 indicating that, even though 

the process of OMP assembly and transport by Omp85- related machinery is 

evolutionarily conserved, species-specific adaptations appear to have occurred (243). 
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Furthermore, in E. coli, Omp85 was recently renamed BamA, and is associated with at 

least 4 lipoproteins: BamB, BamC, and BamD to make up the beta-barrel assembly 

machinery necessary for the transport of beta-barrels to the outer membrane (309) like 

that of  TdfF (Figure 4). Neisseria have homologs to all components of the Bam system 

in E. coli except BamB (296).  Mutations in the Bam system that are tolerated by E. coli 

are not in Neisseria (296).  Thus, there are fundamental differences between Neisseria 

and E. coli in outer membrane beta-barrel biogenesis that could prevent expression and 

export inhibit high levels of full length TdfF protein from being expressed and could 

explain why we could express plug and loop domains of TdfF.  

We also observed two loop species when expressing and purifying rTdfF loops 

(Figure 7). One species was assumed to be full length due to its size of 27 kDa whereas 

the other species was smaller and identified at a molecular weight between 15 kDa and 

20 kDa. It was unclear if the truncated species resulted from premature translational 

termination or from proteolytic cleavage, both of which were artifacts of over expression 

in E. coli.   

The polyclonal rabbit anti-rTdfF sera produced from rTdfF plug and rTdfF loops 

detected heterologous TdfF plug and TdfF loop domains from E. coli, but we were not 

able to detect full length TdfF from N. gonorrhoeae.  A possible explanation for this 

phenomenon was that gonococci were not expressing tdfF under the conditions we tested.  

Expression of tdfF has only been observed in the presence of or adhered/within epithelial 

cells or cell culture media in the absence of additional iron (113). In this study tdfF 

expression was only detected with the use of qualitative RT-PCR when gonococci were 

incubated in cell culture media containing 10% heat-inactivated fetal bovine serum 
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(Figure 6). We concluded that this expression could be due to increased iron stress by the 

FBS as well as a serum specific inducing molecule.  When we investigated TdfF 

expression under these same conditions using western blot analysis the detection of TdfF 

was not possible.  We hypothesized that a serum derived protein of similar molecular 

weight of TdfF was blocking anti-TdfF sera.  This was a non-specific TdfF interaction 

because TdfF was not detectable in either the wild type (FA1090) or tdfF mutant strain 

(MCV659) under the same incubation conditions.  We also concluded that the lack of 

TdfF detection could be due to lack of sensitivity by Western blot analysis. The 

qualitative RT-PCR assay showed low levels of tdfF specific transcript and thus low 

levels of TdfF could be expressed on the surface of gonococci. To detect low levels of 

TdfF, we suggested western blot analysis of outer membrane proteins only.   Finally, 

TdfF may not have been expressed in these assays. Due to differences in cell culture 

media based on FBS lots, the FBS used in these assays could contain excess iron that 

repressed tdfF expression or contain a decreased amount of a co-inducing molecule 

required to produce TdfF.   

In numerous bacteria, gene expression for TonB-dependent transporters involved 

in iron uptake was regulated by Fur. Since TdfF played a role in intracellular iron 

acquisition and contained a putative Fur box it was assumed to be regulated by Fur. 

However when gonococci are incubated in bacterial growth media under iron-deplete 

conditions, tdfF expression is not detected and additional iron in cell culture media 

diminished expression (113) indicating that tdfF may be under a more complex 

regulatory circuit involving iron.  Within close proximity of tdfF on the gonococcal 

chromosome was a gene that encoded an AraC-like regulator, mpeR (see chapter 4). 
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MpeR was first identified due to its role in regulating hydrophobic efflux pump activity 

(92). MpeR was also iron regulated and had a Fur box in its putative promoter (78, 139). 

Since MpeR was iron regulated and within close proximity of tdfF we hypothesized that 

it could be regulating gene expression.  AraC-like regulators are characterized by an N-

terminal ligand binding domain and a C-terminal DNA binding domain. When an AraC-

like regulator binds to it ligand, it regulates the gene that corresponds to its DNA binding 

domain.   AraC-like regulators have been involved in invasion by other bacteria (144). 

Since MpeR also regulated efflux pumps in gonococci it was conceivable that it was a 

global regulator and could also regulate tdfF expression in the presence of a host inducing 

signal. MpeR could also be regulated by other global regulators.  Some genes that encode 

TonB-dependent transporters rely on a signal transduction cascade to lead to the 

subsequent transcription of the receptor. For example, the TonB-dependent transporter 

FecE, in E. coli relies on sigma factors for expression.  Other TonB-dependent 

transporters are under the control of Fur as well as global regulators such as Crp (cAMP 

receptor protein) (315) or regulatory small RNAs (sRNAs).  sRNAs are short RNA 

molecules that are synthesized as discrete transcripts and act by base-pairing with target 

mRNAs over short regions of complementarity. Base-pairing between an sRNA and an 

mRNA can lead to repression of mRNA translation (193, 289, Neisseria posses a Fur and 

iron regulated sRNA, NrrF (Mellin, 2007 #283). sRNA-mediated regulation requires a 

cofactor RNA-binding protein (Hfq) for proper gene regulation and stabilization which 

was also identified in Neisseria (76). NrrF and Hfq have been shown to be involved in 

Neisseria gene regulation in iron-depleted conditions (76, 193). Therefore the lack of tdfF 

expression may be due to a missing inducing molecule that signals that gonococci are 
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within or in contact with epithelial cells. This signal could be necessary for MpeR to 

activate expression of tdfF or activate a complex regulatory cascade that may involve 

MpeR, sigma factors and/or small RNAs.   

We attempted to induce tdfF expression with the use of hormones and iron 

sources identified in serum. We tested the hormones norepinephrineinephrine and 

epinephrine.  These neurotransmitters induce the expression of the B. pertussis TonB-

dependent iron transporter BfeA in the presence of serum (7).  We also tried an 

intracellular iron binding protein, ferritin, which gonococci cannot utilize as an iron 

source but may sense in the intracellular environment. Finally, we tried to detect tdfF 

expression in the presence of defined serum which contains specific serum components 

as a way to exclude potential inducing molecules.  We were not successful in detecting 

tdfF expression in these sera using either qualitative RT-PCR or western blot approaches. 

The lack of induction may be due to excess iron in the McCoy’s 5A media causing a 

repression of tdfF which would inhibit any induction from these molecules.  

To conclude, we did determine that fetal bovine serum in the cell culture media 

does induce tdfF expression and this could be due to iron availability and the presence of 

an inducing signal.  We also determined that tdfF was identical amongst all gonococcal 

isolates sequenced to date indicating there was little immune pressure for sequence 

variability.  We successfully expressed rTdfF plug and loop domains and polyclonal 

rabbit anti-TdfF sera from these recombinant proteins. The sera detected rTdfF by 

western blot but could not be employed to detect TdfF in gonococcus whole cell lysates. 

Elucidating the mechanism of tdfF expression may provide clues to the intracellular 

pathogenesis of N. gonorrhoeae including the identity of the ligand required for TdfF-
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dependent intracellular survival. 
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Chapter 4 INTRACELLULAR IRON ACQUISITION BY Neisseria gonorrhoeae 
 
I. Introduction  

Neisseria meningitidis and Neisseria gonorrhoeae are closely related obligate human 

pathogens.  Both microorganisms possess an array of virulence factors that contribute to 

their ability to adhere and invade mucosal epithelial cells (for a review see (107, 194)). 

The first stages of infection involve adherence and invasion of epithelial cells, mediated 

by bacterial cell surface components such as pili, opacity-associated proteins (Opa) and 

lipooligosaccharide (LOS). Several gonococcal-specific studies indicate that pili play a 

major role in the initial adherence of N. gonorrhoeae (192) and that the Opa proteins are 

involved in both adherence and invasion of epithelial cells (157).  LOS aids in adherence 

and uptake of gonococcal cells, in addition to evoking a strong pro-inflammatory 

response in urethral epithelial cells (122).  

Another important virulence determinant for the bacteria is the ability to acquire iron 

from the human host. Free iron exists in extremely low concentrations within the human 

body. This presents a nutritional barrier to invading microbes called nutritional immunity 

(301).  In order to colonize humans, bacteria must acquire iron from human iron binding 

proteins. Meningococci and gonococci employ multiple TonB-dependent transport 

systems for the acquisition of iron from extracellular human iron binding proteins 
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including, transferrin, lactoferrin and hemoglobin (22, 25, 53, 64, 174, 175, 212, 220, 

307).  Iron is necessary for intracellular survival and this survival is TonB-dependent for 

both N. meningitidis and gonococcal strain FA1090 (113, 161). Furthermore, the TonB-

dependent transporter TdfF is important for gonococcal survival in an iron-dependent 

manner, (113) however its intracellular iron source remains undefined. TdfF is pathogen 

specific and has been identified in both N. meningitidis and N. gonorrhoeae (184, 266). It 

is important to note that TonB-independent intracellular survival has been observed in 

gonococcal strain MS11 (317). MS11 possesses the gonococcal genetic island (178) 

(178) and TonB-independent intracellular survival is directly linked to type IV secretion 

system structural components encoded by the GGI (317).  

Iron is also essential for basic physiological processes within the epithelial cell.  

Epithelial cells take up ferrated transferrin from the serum via receptor-mediated 

endocytosis. The low pH of transferrin-containing endosomes facilitates the release of 

iron from transferrin and the apo-transferrin is recycled to the cell surface (224). Iron is 

then transported out of the endosome to the cytosol.  Biochemical data suggests that 

additional iron uptake mechanisms may exist through putative receptors for serum iron-

binding proteins and molecules but these have not been characterized at a molecular level 

or in vivo (129).  One such molecule could be the recently identified mammalian 

siderophore.  Siderophores are low molecular weight iron binding compounds secreted by 

many microorganisms. Mammalian cells express a homolog of entA from E. coli, which 

encodes a bacterial protein that has a critical role in synthesis of the bacterial siderophore 

enterobactin (75). The iron binding moiety of the mammalian siderophore consists of 2,5-
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DHBA, however the composition and structure of the intact siderophore remains to be 

determined (75).  

Once iron has been acquired by the epithelial cell, any excess iron is stored in the 

cytosolic iron storage protein ferritin.  Ferritin is a 24-mer proteinacious cage made up of 

two subunits, H-ferritin and L-ferritin (280).  Iron is taken up by the two subunits 

cooperatively and H-ferritin possesses ferroxidase activity that converts soluble ferrous 

ions into ferric hydroxides (170). L-ferritin lacks ferroxidase activity but is more efficient 

in inducing iron nucleation and mineralization within the protein cage (12, 251).   When 

the cell needs to utilize iron from the ferritin, the ferritin monomers within the cytoplasm 

of the cell form clusters, by an as yet-undefined mechanism, that are preferentially taken 

up by lysosomes (234). Once the lysosome acidifies, ferritin releases the iron atoms 

which can then be transported and utilized by the cell in a yet to be determined manner.  

The degradation of ferritin can be blocked in vitro with the addition of leupeptin or 

ascorbate. Leupeptin is a lysosomal protease inhibitor that has been used to prevent 

ferritin degradation in multiple cell lines (244).  Ascorbate prevents autophagy of ferritin 

and its subsequent degradation within epithelial cells (38, 131, 211).  

 Host-pathogen interactions have been investigated in the context of Neisseria 

induced alteration of epithelial cell iron homeostasis. During gonococcal and 

meningococcal infections epithelial cells experience an alteration in transferrin receptor 

expression and iron metabolism (31).  Neisseria-infected human epithelial cells have 

reduced levels of transferrin receptor messenger RNA and exhibit a reduction in 

transferrin receptor cycling (31), which could promote the host cells to deplete 

intracellular iron stores.  Microarray data also establishes that cells infected with 
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meningococci demonstrate an iron starvation gene expression profile (32).  It was 

hypothesized that depleting intracellular iron stores would prevent the proliferation of 

pathogenic bacteria that were generally more invasive than commensal species. It was 

demonstrated that during meningococcal infections, ferritin is redistributed from the host 

cell cytosol into aggregates that associated closely with the intracellular bacteria (162) 

and induced a rapid degradation of host cell ferritin.  Thus meningococcal infection of 

epithelial cells causes a reduction of transferrin uptake, which triggers an iron starvation 

response (162). As a consequence, the host cell degrades cytosolic ferritin, releasing iron 

in order to meet its own metabolic needs.  The meningococci, in turn, hijack the ferritin-

derived iron in order to replicate within the epithelial cells (31, 32, 162). 

Iron is required for enzymatic functions; however, excess free iron can be 

detrimental by increasing oxidative damage. Therefore, iron homeostasis within the 

bacterial cell must be tightly regulated (37).  The ferric uptake regulator (Fur) acts as a 

transcriptional regulator for iron acquisition genes in N. gonorrhoeae.  Under iron-replete 

conditions, Fur binds to a specific DNA sequence called the Fur box in the promoter of 

iron regulated genes and blocks transcription (13). Under iron-deplete conditions Fur 

disassociates from the Fur box and allows the RNA polymerase to bind to the promoter 

and transcribe the iron regulated gene (13).  Fur may not be the only transcriptional 

regulator of iron acquisition genes in N. gonorrhoeae. An AraC-like regulator, MpeR, 

was first identified as a regulator of a hydrophobic agent efflux pump (92).  AraC-like 

regulators have been shown to regulate the acquisition of iron in multiple microorganisms 

including Yersenia pestis and Bordetella pertussis (16, 87). Interestingly, mpeR is iron 

regulated (78, 139) indicating it could in turn regulate iron acquisition systems and it was 
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within close proximity to tdfF on the gonococcal chromosome (Figure 10). In other 

microorganisms in which AraC-like regulation occurs on iron transport genes, the AraC-

like regulator is encoded within close proximity of the transport system that it regulates 

(16, 87).  Therefore we hypothesize that MpeR may play a regulatory role in the 

expression of tdfF.  
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Figure 10. Chromosomal locus of tdfF                
The gene, tdfF is shaded in yellow and encodes a TonB-dependent transporter important 
for intracellular survival. Upstream of tdfF is a gene that encodes a conserved 
hypothetical protein (CHP), a periplasmic binding protein (PBP) and another conserved 
hypothetical protein where are all shaded in light blue.  Encoded in the opposite direction 
within close proximity to tdfF is mpeR, shaded in orange.   
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In this study, we investigated the role of intracellular iron in the survival of N. 

gonorrhoeae. We examined the role of MpeR during intracellular survival as a means to 

determine if MpeR regulated TdfF. Utilizing gentamicin protection assays we determined 

that MpeR did not play a regulatory role in intracellular survival under these in vitro 

conditions.  We explored gonococcal survival in ME180 epithelial cells incubated in 

varying serum and iron conditions and demonstrated that similar to N. meningitidis, 

gonococci have increased survival when epithelial cells were serum starved however, the 

survival in the absence of serum was not due to increased intracellular ferritin 

degradation but due to increased iron in the serum-deplete media. Additionally, we 

investigated gonococcal utilization of 2,5- DHBA with plate bioassays and demonstrated 

that gonococcal strain FA1090 utilized 2,5- DHBA at intermediate levels compared to 

iron sources known to be utilized by gonococci and that iron acquisition by  2,5-DHBA 

was TonB-independent.  

II. Results 
 
A. MpeR does not have an affect on intracellular survival 

ME180 cervical epithelial cells support gonococcal invasion (137, 141) and 

within 4 hours gonococci adhere to and invade the epithelial cells (113).  Therefore, to 

determine the number of bacteria that survive within the intracellular environment we 

employed gentamicin protection assays with ME180 cells.  In these assays, pilliated 

gonococci were suspended in infection media and added to two separate epithelial cell 

monolayer at an MOI of 10. This infection media consisted of McCoy’s 5A cell culture 

media (Gibco), 10% heat-inactivated fetal bovine serum (FBS) (Gibco) and iron 

supplementation to enhance invasion.  Fetal bovine serum contains bovine transferrin 
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which is not an iron source for gonococci because the transferrin binding proteins 

(TbpA/TbpB) are species specific for human transferrin (63, 263).  After the monolayers 

were incubated with the infection media consisting of gonococci for 4 hours, the 

monolayers were washed twice with PBS and gentamicin was added to kill any 

extracellular bacteria. The extracellular gonococci were susceptible to gentamicin killing 

but intracellular bacteria were protected because the drug was not able to penetrate 

eukaryotic cells.   Both monolayers were then washed again to remove any remaining 

gentamicin. One monolayer was lysed and plated for intracellular bacteria enumeration. 

This was time point 0.  Replication media, consisting of McCoy’s 5A cell culture media 

and 10% heat-inactivated FBS was added to the other monolayer. After 24 hours of 

incubation, the monolayer was washed, treated with gentamicin, lysed and plated for the 

enumeration of intracellular bacteria which was the 24 hour time point.  

 The mpeR gene was originally identified as encoding an AraC-like regulator that 

plays a role in maximizing the function of hydrophobic agent efflux pumps (92).  

Members of the AraC/XylS transcriptional regulator family have been characterized from 

a wide variety of prokaryotes including both Gram-negative and Gram-positive bacteria. 

The characteristic features used to identify MpeR as an AraC-like regulator are a 

conserved stretch of approximately 100 amino acids at the C-terminal end that serves as 

the DNA-binding domain and an N-terminal ligand binding domain (97). The main 

regulatory roles of AraC-like regulators are in carbon metabolism, stress response, and 

virulence and/or pathogenesis (97).  In many microorganisms AraC-like transcriptional 

regulators play a role in intracellular survival. For example, an AraC-like transcriptional 

regulator PerA contributes to Enterococcus faecalis intracellular survival within 
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macrophages (59).  In Salmonella enterica, two AraC-like regulators play a role in 

intracellular survival within epithelial cells (79, 237).  

 We initially determined that mpeR was iron regulated, (data not shown) which 

was recently confirmed by microarray assays, FURTA assays, and the presence of a Fur 

box in its promoter (78, 139).  We hypothesized that since MpeR itself was iron 

regulated, it could also regulate iron acquisition systems in gonococci, particularly the 

one putatively encoded by the tdfF locus thus impacting intracellular survival. To 

determine if MpeR played a role in intracellular survival, we performed a gentamicin 

protection assay comparing the wild type strain to the mpeR mutant strain (MCV304) and 

the mpeRC (MCV305) complemented strain. The mpeR mutant strain (MCV304) 

consisted of the mpeR gene interrupted by a kanamycin resistance cassette. We used the 

tonB (MCV656) and tdfF (MCV659) mutant strain as controls in these protection assays. 

As expected both the tonB (MCV656) and tdfF (MCV659) had attenuated survival with 

reduction in viable counts by 4 log and 1 log respectively, compared to the wild type 

strain (FA1090) which had been previously observed (113) (Figure 11A). Both, the mpeR 

(MCV304) and mpeRC (MCV305) strains survived similarly to the wild type strain 

(FA1090) (Figure 11A). It appears that under these in vitro conditions, MpeR does not 

have an effect on intracellular survival indicating it may not regulate tdfF expression 

which has shown to be important for intracellular survival.  
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Figure 11. Intracellular survival is not MpeR-dependent and increases in serum 
starved epithelial cells  
 
 A) Intracellular survival in the presence of replication media containing McCoy’s5A and 
10% heat-inactivated FBS. The bars represent intracellular survival in CFU/ml (log10) 
for the following gonococcal strains: Wild type (FA109) (black), tonB mutant (MCV656) 
(checkered), tdfF mutant (MCV659)  (horizontal black lines) mpeR mutant (MCV304)  
(vertical black lines) and mpeRC strain (MCV304) (93). Time points in hours indicated 
along the x-axis. Intracellular survival assays were performed in triplicate and standard 
deviation is indicated above each bar. A P value of < .01 was considered statistically 
significant.  An asterisk (*) denotes a significant decrease in intracellular bacteria counts 
as compared to the wild type is indicated by an asterisk (*). 
 
 B) Intracellular survival in the presence of replication media containing McCoy’s 5A 
alone. The bars represent intracellular survival in CFU/ml (log10) for the following 
gonococcal strains: Wild type (FA1090) (black), tonB mutant (MCV 656) (checkered), 
tdfF mutant (MCV659) (horizontal black lines) mpeR mutant (MCV304) (vertical black 
lines) and mpeRC strain (MCV305) (93). Time points are indicated in hours along the x-
axis.  Intracellular survival assays were performed in triplicate and standard deviation is 
indicated above each bar. A P value of < .01 was considered statistically significant.  An 
asterisk (*) denotes a significant decrease in intracellular bacteria counts as compared to 
the wild type is indicated by an asterisk (*).  
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B. Serum starvation increases gonococcal intracellular survival 

 In N. meningitidis, intracellular survival increases in serum starved epithelial cells 

(162). Serum starvation increases the desferal-chelatable iron pool in cultured 

hepatocytes and this increase in desferal-chelatable pools is derived from degraded 

ferritin (211).  Therefore, bacteria that survive in serum-starved epithelial cells could be 

acquiring iron from degraded ferritin.  We hypothesized that if N. gonorrhoeae were 

utilizing iron from degraded ferritin then they would survive in serum starved epithelial 

cells similar to N. meningitidis. Gentamicin protection assays were performed as 

described above, but after the initial 4 hour incubation and gentamicin treatment, the cells 

were incubated in McCoy’s 5A (Gibco) alone for 24 hours to induce serum starvation. 

We investigated intracellular survival under serum-deplete conditions with the following 

gonococcal strains: the wild type strain (FA1090),  the tonB mutant strain (MCV659), the 

tdfF mutant strain (MCV659) and the mpeR mutant strain (MCV305).  The tonB 

(MCV656) and tdfF (MCV659) mutant strains survived as well as the wild type strain 

(FA1090) (Figure 11B) both mutant strains survived within 0.5 log of the wild type 

strain.  The mpeR (MCV304) and mpeRC (MCV305) strains survived as well as wild type 

which was observed previously in the presence of serum (Figure 11A).  These results 

indicate that gonococci could be utilizing iron from degraded ferritin in a TdfF- and/or a 

TonB-independent manner.  

C. Intracellular survival is slightly attenuated in the presence of apo-bovine 

transferrin 

Replication media which consisted of McCoy’s 5A and 10% FBS contains bovine 

specific iron binding proteins including bovine transferrin making the media iron-deplete 
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for gonococci. Previous assays demonstrated that gonococci could not replicate in this 

media (113). The attenuated survival of tonB and tdfF mutant strains could be rescued 

with the addition of iron to the replication media (113) (Figure 12).  McCoy’s 5A alone is 

not iron free and could contain significant amounts of iron to rescue the mutants, similar 

to what we observed when additional iron (FeNO3) was added to replication media 

(Figure 12) (113).   
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Figure 12. Gonococcal mutants are rescued with the addition of excess iron  
Intracellular survival in the presence of McCoy’s 5A +10% heat-inactivated FBS 
supplemented with additional iron. The bars represent gonococcal survival in CFU/ml 
(log10) for the following gonococcal strains: Wild type (FA1090) (black), tonB mutant 
(MCV656) (checkered), tdfF mutant (MCV659) (horizontal black lines) mpeR mutant 
(MCV304) (vertical black lines). Time points in hours indicated along the x-axis. 
Intracellular survival assays were performed in triplicate and standard deviation is 
indicated above each bar.  
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To ensure that the TonB- TdfF-independent survival phenomenon that was observed in 

the absence of serum was not due to extracellular iron, we performed intracellular 

survival assays in which the replication media was supplemented with 40 µg/ml of apo-

bovine transferrin.  After the 4 hour infection and initial gentamicin treatment, cells were 

incubated with replication media consisting of McCoy’s 5A and apo-bovine transferrin or 

McCoy’s 5A, 10% FBS, and additional apo-bovine transferrin for 24 hours. The bovine 

transferrin would chelate any available iron away from gonococci.  The following 

gonococcal strains were tested for intracellular survival in the presence of excess apo-

bovine transferrin: the wild type strain (FA1090), the tonB mutant strain (MCV656) and 

the tdfF mutant strain (MCV659).  In the presence of FBS and 40 µg/ml apo-bovine 

transferrin we observed similar survival phenotypes as was observed in the presence of 

McCoy’s 5A and FBS (Figure 13A). Both the tonB (MCV656) and tdfF (MCV659) 

strains were significantly attenuated in survival compared to the wild type strain 

(FA1090) with viable counts 4 log and 1 log lower, respectively (Figure 13A).  When 

McCoy’s 5A only replication media was supplemented with 40 µg/ml of apo-bovine 

transferrin, the tonB mutant strain still survived but was slightly attenuated compared to 

wild type. We also observed a slight attenuation in survival of the tdfF mutant strain 

compared to the wild type in the absence of FBS. The decreased survival of the ton and 

tdfF mutant strains was not significant in the McCoy’s 5A + apo-bovine transferrin 

(Figure 13B) compared to the observed attenuation in the presence of FBS with 

additional apo-bovine transferrin (Figure 13A). One possible explanation for this 

phenomenon is that the addition of 40 µg/ml of apo-bovine transferrin was not enough to 

chelate all the excess iron in the McCoy’s 5A replication media and therefore the mutants 



www.manaraa.com

 

 

111

were being rescued by any remaining unbound iron.  Another possible interpretation of 

these results is that the bovine-transferrin was delivering any iron in McCoy’s 5A to the 

ME180 epithelial cells.  This would decrease ferritin degradation and increase 

intracellular stores within the ferritin. Gonococci can not acquire iron directly from 

ferritin (10, 41).   If gonococci were tapping into iron from degraded ferritin then a 

decrease in ferritin degradation could contribute to the lower level of survival in the 

presence of apo-bovine transferrin in McCoy’s 5A alone.  
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Figure 13. Intracellular survival in the presence of apo-bovine transferrin  
 
A) Intracellular survival in the presence of McCoy’s 5A +10% heat-inactivated FBS with 
an additional 40µg/ml apo-bovine transferrin. The bars represent gonococcal survival in 
CFU/ml (log10) for the following gonococcal strains: wild type (FA1090) (black), tonB 
mutant (MCV656) (checkered) and tdfF mutant (MCV659) (horizontal black lines). Time 
points in hours indicated along the x-axis. Intracellular survival assays were performed in 
triplicate and standard deviation is indicated above each bar.  A P value of < .01 and < 
.05 was considered statistically significant.  A significant decrease in intracellular 
bacteria compared to wild type by P<.01 is indicated by an asterisk (*) and a significant 
decrease in survival compared to wild type at P<.05 is indicated by (@).  
 
 
B) Intracellular survival in the presence of McCoy’s 5A with an additional 40µg/ml apo-
bovine transferrin. The bars represent intracellular survival in CFU/ml (log10) for the 
following gonococcal strains: FA1090 (black), tonB mutant (MCV656) (checkered) and 
tdfF mutant (MCV659) (horizontal black lines). Time points in hours indicated along the 
x-axis.  Intracellular survival assays were performed in triplicate and standard deviation 
is indicated above each bar.  A P value of < .01 and < .05 was considered statistically 
significant.  A significant decrease in intracellular bacteria compared to wild type by 
P<.01 is indicated by an asterisk (*) and a significant decrease in survival compared to 
wild type at P<.05 is indicated by (@).  
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D. Addition of ascorbate inhibits gonococcal intracellular survival in the presence of 

FBS 

Ferritin cannot be a direct iron source for Neisseria (10, 41) however if the ferritin 

were degraded, the subsequently released iron could be acquired by the bacteria. 

Meningococcal infections cause ferritin to cluster (162) within the cytoplasm similar to 

what is observed when the epithelial cell needs to utilize iron from ferritin (234).  N. 

meningitidis also induce ferritin degradation within host epithelial cells (162). Ferritin 

degradation can be pharmacologically blocked with the addition of ascorbate (vitamin C) 

or leupeptin. The biosynthesis of ferritin and the rate of iron taken up by transferrin are 

not affected by the presence of ascorbate. However, ascorbate does prevent autophagy of 

ferritin and its subsequent degradation in several cell types (38, 131, 211). During N. 

meningitidis infection, cells treated with ascorbate exhibit a decrease in intracellular 

meningococci and increased levels of ferritin compared to untreated epithelial cells (162).  

We hypothesized that if gonococci were accessing iron from degraded ferritin, 

then survival would be attenuated in the presence of ascorbate similarly to what was 

observed in N. meningitidis. We performed gentamicin protection assays in which the 

replication media was supplemented with 200 µM ascorbate.  This concentration of 

ascorbate inhibited intracellular ferritin degradation (38, 131) but did not affect 

gonococcal survival in the replication media alone (data not shown). Using the wild type 

strain (FA1090) we performed parallel intracellular survival assays in which the 

replication media was one of the following: McCoy’s 5A + 10% FBS, McCoy’s 5A + 

10% FBS supplemented with 200 µM ascorbate  or McCoy’s 5A + 10% FBS 



www.manaraa.com

 

 

115

supplemented with 10 µM leupeptin. When ascorbate was added to replication media 

containing McCoy’s 5A and FBS there was a significant decrease in gonococcal survival 

with a decrease of 1.2 log in viable counts (Figure 14A) indicating that gonococcal 

survival could be dependent on iron from ferritin degradation. We were also interested in 

the intracellular survival of the wild type gonococci in the presence of leupeptin, a 

lysosomal protease inhibitor.  Interestingly there was only a slight decrease in 

intracellular survival in the presence of 10µM leupeptin with a decrease by 0.2 logs 

(Figure 14A).  In N. meningitidis, intracellular survival was attenuated in the presence of 

leupeptin, but leupeptin only partially prevented ferritin degradation (162).  Therefore, in 

our experiments, in the presence of leupeptin, ferritin could be partially degraded and still 

acting as a potential iron source for the intracellular bacteria.  

We also investigated the effect of ascorbate and leupeptin when gentamicin 

protection assays were performed with replication media containing McCoy’s 5A in the 

absence of FBS.  We performed gentamicin protection assays using the wild type strain 

(FA1090) under the following conditions: McCoy’s 5A + 10% FBS, McCoy’s 5A alone, 

McCoy’s 5A supplemented with 200µM ascorbate, or McCoy’s 5A supplemented with 

10µM leupeptin. We previously observed that gonococci survived in a Ton and TdfF-

independent manner in the absence of FBS.  We correlated increased survival phenotype 

in these mutants with the rationale that serum starved cells had degraded their ferritin and 

gonococci were utilizing the subsequent stored iron in a receptor and TonB-independent 

manner.  We expected a decrease in survival in the presence of both ascorbate and 

leupeptin since both have been proven to decrease ferritin degradation in epithelial cells 

(38, 244).  Surprisingly, gonococci survived very well in the presence of both ferritin 
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degradation inhibitors (Figure 14B).  Neither ascorbate nor leupeptin decreased 

gonococcal wild type (FA1090) intracellular survival indicating that the TonB and TdfF-

independent survival we had previously observed was not due to acquisition of iron from 

degraded ferritin.  
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Figure 14. The effect of ascorbate and leupeptin on gonococcal strain FA1090 
intracellular survival  
 
A) Intracellular survival assay for gonococcal strain FA1090. The bars represent 
intracellular survival in CFU/ml (log10) in which the replication media contains: 
McCoy’s 5A+10% FBS (black bar with white hatch mark pattern) McCoy’s 
5A+10%FBS + 200µM ascorbate (checkered pattern) or McCoy’s 5A+ 10% FBS + 
10µM leupeptin (black and white horizontal stripes). Time points in hours indicated 
along the x-axis. All intracellular survival assays were performed in triplicate and the 
standard deviation is indicated above each bar.  A P value of  < .05was considered 
statistically significant.  A significant decrease in intracellular bacteria compared to wild 
type in cell culture media alone by P<.05 is indicated by (@). 
 
B) Intracellular survival assays for gonococcal strain FA1090.The bars represent 
intracellular survival in CFU/ml (log10) in which the replication media contains: 
McCoy’s 5A + 10% FBS (black bars with white hatch mark pattern), McCoy’s 5A alone 
(solid black), McCoy’s 5A + 200uM ascorbate (checkered pattern) or McCoy’s 5A+ 
10µM leupeptin (black and white horizontal stripes). Time points in hours indicated 
along the x-axis. All intracellular survival assays were performed in triplicate and the 
standard deviation is indicated above each bar.  A P value of  < .05 was considered 
statistically significant.  A significant decrease in intracellular bacteria compared to wild 
type in cell culture media alone by P<.05 is indicated by (@). 
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E. Intermediate levels of Ton-independent growth in the presence of 2,5- and 2,3-

DHBA 

TdfF was originally identified as a TonB-dependent transporter due to its 

homology to FhuE (286) which is a TonB-dependent siderophore transporter in E. coli, 

(252). FhuE is required for the uptake of iron from the hydroxamate siderophores 

coprogen, ferrioxamine B and rhodotorulic acid by E. coli (119, 152).  N. gonorrhoeae do 

not secrete siderophores; however, the bacteria can utilize siderophores produced by 

other bacteria, known as xenosiderphore utilization.  Enterobactin, a catecholate 

siderophore produced by E. coli is utilized by N. gonorrhoeae in a TonB-dependent 

receptor mediated way (43).  Based on the homology that TdfF shares with the 

siderophore receptor of E. coli, we hypothesized that gonococci could utilize a host 

derived siderophore-like molecule in a TonB- or TdfF-dependent manner.   Recently a 

gene encoding a protein important for mammalian siderophore biosynthesis was 

identified (75).  This siderophore-like molecule has a 2, 5-dihydroxybenzoic acid 

(DHBA) binding moiety which is similar to the bacteria derived siderophore, 

enterobactin which has a 2, 3-DHBA binding moiety (240). Therefore we investigated the 

utilization of ferrated 2, 3- and 2, 5-DHBA with plate bioassays. In these assays, 

gonococci were streaked out onto chemically defined, iron chelated growth media. Wells 

were bored into the media and each iron source tested was added to these wells. Growth 

in millimeters around each iron source was measured and an indication that gonococci 

utilize the iron sources.  Growth in the presence of ferrated 2, 3- and 2, 5-DHBA was 
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analyzed in the following strains: the wild type strain (FA1090), the tonB mutant strain 

(MCV656), the tdfF mutant strain  (MCV659), the  fetA mutant strain (FA6959), and 

mpeR mutant strain (MCV304). FetA was identified as a TonB-dependent 

xenosiderphore receptor important for enterobactin utilization (43). Ferric citrate was 

used as a positive control since gonococci utilize it as an iron source in a Ton-

independent manner. Bovine transferrin was used as a negative control because 

gonococci do not use it as an iron source (63, 263). Dihydroxybenozic serine dimer (D2) 

is an enterobactin derivative and was used as a TonB-dependent control since gonococci 

could only utilize this xenosiderphore in a FetA, TonB-dependent manner (see chapter 4). 

Figure 15 shows growth zones in millimeters detected around each iron source indicating 

iron source utilization. As expected, D2 utilization was TonB and FetA dependent. When 

comparing growth of the wild type in the presence of D2, a growth zone of 30 mm was 

observed whereas growth zones of  19mm and 16mm were observed for 2,3-DHBA and 

2,5-DHBA  (Figure 15).  There seems to be a slight increase in growth zones around 2,3-

DHBA compared to 2,5-between the gonococcal strains tested (Figure 15).  The wild 

type and mutant gonococcal strains exhibited similar intermediate growth in the presence 

of ferrated 2, 3-DHBA and 2,5-DHBA compared to iron sources known to be utilized. 

These results imply that N. gonorrhoeae could utilize iron from these compounds 

however less efficiently compared to known iron sources and in a TonB- receptor-

independent manner.   
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Figure 15. Utilization of 2, 3-DHBA and 2, 5-DHBA by gonococcal strain FA1090  
CDM plates were supplemented with apo-bovine transferrin to chelate any iron in the 
growth media. Wells within the plates were inoculated with 10µl of the following iron 
sources: D2: dimer form of dihydroxybenzoylserine, 2, 3-DHBA, Ferric citrate (+), 2, 5-
DHBA, apo-bovine transferrin. Each bar indicates growth in millimeters around each iron 
source.  Bars represent the growth zone of the following strains: wild type (FA1090) 
(black), fetA mutant strain (FA6959) (checkered), tonB mutant strain (MCV656) (gray), 
mpeR mutant strain (MCV304) (93) or tdfF mutant strain (MCV659) (horizontal stripes). 
Horizontal dotted line indicates the limit of detection because it is the diameter of the 
well containing each iron source. Plate bioassay was only performed once in triplicate.  
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III. Discussion  

 N. gonorrhoeae, an obligate human pathogen, has a diverse array of iron 

acquisition systems for utilization of host extracellular iron sources. For a review see 

(65). Gonococci also possess a pathogen specific gene that codes for a TonB-dependent 

transporter, TdfF (184, 266). Attenuated intracellular survival was demonstrated by the 

tdfF mutant strain and was rescued with the addition of iron indicating this transporter 

was important for intracellular iron acquisition (Figure 11) (113).   

AraC-like regulators have been shown to be important for host cell invasion. In 

Salmonella enterica serovar Typhimurium, which is a major cause of gastroenteritis, 

multiple transcriptional regulators have been identified that activate the expression of 

invasion genes in response to both environmental and genetic regulatory factors (144). 

Two of these transcriptional regulators, HilC and HilD are predicted to be members of 

the AraC/XylS family of transcriptional activators, based on homology within their C-

terminal domains that contain a characteristic helix-turn-helix DNA binding motif (79, 

237, 256). A mutation in hilD results in 53-fold decrease in invasion of cultured epithelial 

cells and a mutation in hilC also results in attenuated invasion of host epithelial cells 

(256).  The host specific signals sensed by these AraC-like regulators have not been 

identified (144). AraC-like regulators also play a role in iron acquisition in other 

microorganisms including Y. pestis and B. pertussis (16, 87).  In these systems the AraC-

like regulator is Fur regulated and once the inducing molecule is sensed under iron-

deplete conditions, the AraC-like regulator activates the iron acquisition system. Within 

close proximity to tdfF on the gonococcal chromosome is the gene mpeR which encodes 

an AraC-like transcriptional regulator (Figure 10).  MpeR plays a role in the regulation of 
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hydrophobic agent efflux pumps mediated by the Mtr system (92).  MpeR is iron 

regulated and contains a confirmed Fur box (78, 139).  This suggests that MpeR could 

modulate iron acquisition systems such as TdfF.  If MpeR did regulate tdfF expression 

we would expect a change in intracellular survival phenotype in the mpeR mutant strain 

(MCV304). For example, if MpeR acted as an activator for tdfF expression then the 

mpeR mutant strain (MCV304) should exhibit decreased intracellular survival. However, 

if MpeR repressed tdfF expression then we would expect the opposite in which the mpeR 

mutant strain (MCV304) would exhibit increased intracellular survival.  During our in 

vitro intracellular survival assays the mpeR mutant (MCV304) survived as well as the 

wild type strain suggesting that it does not regulate tdfF (Figure 11). One possible 

explanation for this outcome is that MpeR may be under the control of another regulator. 

AraC-like regulators are often part of complex regulatory cascades involving hierarchal 

induction of sequential regulators in response to multiple signals.  Additionally, it has 

been reported that the intergenic region between mpeR and tdfF contained two Fur boxes 

and that this intergenic region could serve as two divergent promoters (84). If the bacteria 

were under iron-replete conditions within the intracellular environment, then the 

expression of mpeR would be repressed and thus the wild type (FA1090) would not 

express MpeR similar to the mpeR mutant strain (MCV304).   Recently, an in vitro study 

using S1 nuclease protection assays showed no differential regulation of the genes co-

transcribed with tdfF in meningococcal mutant strains either lacking or over expressing 

mpeR (84). This study concluded that MpeR was not involved in the regulation of the 

putative tdfF operon under in vitro conditions (84).  
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Since a ligand is expected bind to the N-terminal portion of an AraC-like 

regulator before it can act as a regulator, the signal specific for MpeR regulation could be 

missing in our in vitro assays as well. In the absence of this inducing ligand, MpeR would 

not repress or activate tdfF expression and a change in intracellular survival between wild 

type and mpeR mutant strains would not be observed.  

   TdfF was first identified in the N. gonorrhoeae FA1090 genome database by 

comparing its amino acid sequence to a panel of characterized TonB-dependent receptors 

(286). TdfF has an amino acid identity of 30% to the E. coli siderophore receptor FhuE 

(252, 286). Since tdfF expression is host specific and encodes a receptor similar to a 

siderophore receptor in E. coli, we hypothesized that the ligand for TdfF was host derived 

and possibly a mammalian siderophore-like molecule. Mammalian cells have 

homologous genes to those that encode siderophores in E. coli.  A small molecule 

identified in mammalian cells through gas chromatography-mass spectrometry contains a 

2, 5-dihydroxybenzoic acid (DHBA) moiety (75).  Dihydroxybenozic acid is incorporated 

into various bacterial derived siderophores.  2,3-DHBA is the iron-binding moiety of 

bacterial enterobactin (240) and similar to 2,3-DHBA, 2,5-DHBA can chelate iron (75).  

As previously stated, DHBA is a binding moiety that contains a carboxylic acid group by 

which the ring attaches to various scaffolds via amide linkages. Enterobactin consists of 

three dihydroxybenzoic acid subunits (2,3-DHBA) linked together with serine backbone 

(208). Gonococcal strain FA1090 utilized the xenosiderophore enterobactin through a 

FetA, TonB-dependent mechanism (43). TonB-independent siderophore utilization has 

also been observed for xenosiderophores in other gonococcal strains (273). Therefore we 

investigated whether gonococcal strain FA1090 could utilize 2, 5-DHBA and if 
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utilization was TonB- and/or TdfF-dependent, potentially identifying the ligand for TdfF.  

Gonococci utilized both ferrated 2,5- and 2,3-DHBA in a Ton- FetA- and TdfF-

independent manner (Figure 15).  For wild type strain FA1090, DHBA derivatives were 

utilized at intermediate levels in comparison to the positive control or DHBS dimer (D2) 

(Figure 15). It is possible that the intermediate growth observed in the presence of DHBA 

was because the TonB-dependent receptors did not recognize the iron binding moieties 

alone.  Perhaps, the xenosiderophore receptor recognized the amino acid side chains 

associated with the DHBA binding moiety.  In E. coli the TonB-dependent receptor for 

enterobactin, FepA, is an outer membrane transporter with eleven surface exposed loops 

at the entrance of the membrane channel. FepA transports the catecholate enterobactin, 

but no other catecholates, nor any non-catecholate compounds (8, 42). Studies in which 

the 11 surface loops are mutagenized indicate that the receptor's loops enwrap the ferric 

siderophore at binding equilibrium and this interaction is specific to the siderophore 

amino acid backbone (8, 42).  The gonococcal TonB-dependent xenosiderophore 

receptors may have a similar discrimination for specific catecholate iron sources and may 

still recognize and utilize iron from the intact putative mammalian siderophore even if it 

does not utilize iron from the binding moiety within the siderophore.  The TonB-

independent intermediate levels of growth observed through the plate bioassays may be 

due to an alternative uptake pathway that involves the periplasmic ABC transport system, 

FbpABC and porin acting as the outer membrane portal for the ferrated DHBA 

derivatives as well as free iron. This Ton-independent pathway has been identified in 

gonococcal strain FA19 (273) and we hypothesized that gonococcal strain FA1090 uses 
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both a TonB-, receptor dependent pathway as well as a Ton-independent FbpABC 

pathway for iron utilization from xenosiderophores.   

 Another potential iron source for intracellular gonococci could be degraded 

ferritin.  Ferritin cannot directly act as an iron source for Neisseria (10, 41).  However, 

iron from degraded ferritin could be utilized by gonococci when bound to a protein or 

transport molecule that was involved in the trafficking from degraded ferritin to the 

cellular cytosol. During meningococcal infections, ferritin is redistributed within the 

epithelial cells to where the meningococci are located (162). Ferritin is also degraded 

during meningococcal infections and iron previously contained within ferritin is released 

as a low-molecular-weight species during infection (162). Preventing ferritin degradation 

with the use of ascorbate or leupeptin reduces meningococcal intracellular replication 

(162).  Thus during infection, meningococci could possibly access the iron stored by 

ferritin bound to a low molecular weight iron transporter. Epithelial cells infected with N. 

gonorrhoeae exhibited an altered distribution of surface and cycling transferrin receptors 

as well as reduced internalization of ferrated transferrin (31).  A reduction in transferrin 

cycling by the epithelial cells would lead to iron-deplete conditions for the cell and 

ferritin degradation. Therefore we hypothesized that N. gonorrhoeae intracellular 

survival was dependent on iron stored within the cytosolic ferritin.  We first investigated 

intracellular survival in serum starved cells.  

 Serum starvation increased desferal-chelatable pools derived from degraded 

ferritin within the epithelial cell (211).  We observed an increase in intracellular survival 

in the absence of FBS amongst all gonococcal strains tested indicating that gonococci 

could access iron from desferal-chelatable pools in a TonB- TdfF-independent manner 
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(Figure 11B).  Excess apo-bovine transferrin was added to the replication media to 

chelate any excess iron in the McCoy’s 5A cell culture media and resulted in a TonB- 

TdfF- independent survival (Figure 13B).  We hypothesized that the bovine transferrin 

was not chelating all the excess iron in the McCoy’s 5A media and we were observing an 

iron induced invasion (Figure 12). An alternative hypothesis was that the excess bovine 

transferrin was chelating any excess iron away from gonococci and delivering it to the 

epithelial cells, preventing ferritin degradation due to the influx of iron. To elucidate the 

mechanism of increased survival in the absence of FBS we performed intracellular 

survival assays in the presence of the ferritin degradation inhibitors ascorbate and 

leupeptin. Neither inhibitor affected intracellular survival indicating that the survival 

observed in the presence of McCoy’s 5A was not dependent on iron originating from 

ferritin (Figure 14B).  We suspect that the TonB- TdfF- independent survival observed in 

the presence of McCoy’s 5A alone is due to excess iron within the media. McCoy's 5A 

medium was originally developed for the growth of Novikoff hepatoma cells. It is a 

general purpose medium for both primary and established cell lines (293). McCoy’s 5A 

contains inorganic salts, amino acids, vitamins, peptone, glutamine and glucose. Iron is 

not a component of McCoy’s 5A; however, iron is not chelated and iron could be in any 

of the  media’s ingredients.  The addition of fetal bovine serum to McCoy’s 5A chelated 

any free iron due to bovine specific serum iron binding proteins. We concluded that 

McCoy’s 5A media supplemented with 10% heat-inactivated FBS has the lowest amount 

of free iron for gonococci to utilize, McCoy’s 5A media supplemented with 40ug/ml apo-

bovine transferrin has an intermediate amount of free iron, and McCoy’s 5A media has 

the freest iron when comparing all three media.  Hence, the difference in intracellular 
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survival phenotypes in the various media could be due to gonococci acquiring free iron 

from these media.  

When investigating intracellular survival in the presence of FBS, we confirmed 

previous findings that survival is both TonB- and TdfF- dependent (113, 161) (Figure 

10A) and it was dependent on iron acquisition (Figure 11).  Interestingly, in the presence 

of FBS we did observe attenuated gonococcal growth in the presence of ascorbate (Figure 

14A).  One conclusion we can draw from this result was that when intracellular iron was 

the only source of iron available to gonococci, the host cell must first degrade ferritin 

before gonococci could use the iron contained within the ferritin core. However, if 

ascorbate prevented intracellular survival, then why did we not observe a difference in 

survival in the presence of Leupeptin? Leupeptin inhibits lysomal protease and also 

prevents ferritin degradation. We may have been observing an indirect effect by 

ascorbate that did not involve ferritin degradation.  Ascorbate can also complex with iron 

and could be sequestering iron from the gonococci during the infection. Then the 

observed effect that ascorbate had on gonococcal infection would not be due to lack of 

iron from degraded ferritin but rather survival under iron deplete conditions.  

If gonococci were acquiring iron originating from degraded ferritin then it would 

still be assumed that ferritin degradation leads to the production of another iron-binding 

protein that was used by the bacteria. As investigations into cellular iron metabolism 

continue it will be important to determine if these iron transport protein/molecules could 

be hijacked by N. gonorrhoeae.   

In conclusion we determined that gonococci could utilize iron from iron binding 

moieties commonly found in bacterial siderophores and a mammalian siderophore in a 
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Ton and receptor-independent manner.  We also determined that ascorbate inhibits 

intracellular gonococcal survival which could be due to the inhibition of ferritin 

degradation or iron sequestration by the ascorbate.  Finally, MpeR did not play a role in 

intracellular survival in these in vitro assays.  Future studies on understanding gonococcal 

intracellular iron acquisition would provide a clear picture of intracellular pathogenesis 

caused by N. gonorrhoeae.  
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Chapter 5 The IRON-REPRESSED, AraC-LIKE REGULATOR, MpeR, 
ACTIVATES EXPRESSION OF fetA IN Neisseria gonorrhoeae  

 

I. Introduction  

Neisseria gonorrhoeae is an obligate human pathogen that primarily infects the 

urogenital or anorectal mucosa following intimate contact.  N. gonorrhoeae is the 

etiological agent of gonorrhea, which is the second most commonly-reported, notifiable 

infectious disease in the United States. In 2009, the Centers for Disease Control and 

Prevention reported a total of 301,174 cases of gonorrhea in the United States(48); 

however, this is thought to be a conservative estimate due to underreporting.  In men, a 

gonococcal infection is characterized by acute urethritis with symptoms that include 

purulent discharge and dysuria. It is estimated that up to 80% of women infected with N. 

gonorrhoeae are asymptomatic or present with very minor symptoms (190).  Women 

with symptomatic disease experience cervicitis and vaginal discharge. When left 

untreated, due to the asymptomatic nature of the infection in women, the bacteria can 

ascend to the upper female genital tract. This ascending infection can result in pelvic 

inflammatory disease, which may lead to ectopic pregnancy or infertility (203, 267). The 

Centers for Disease Control currently only recommends extended-spectrum 

cephalosporins for treatment due to increased antimicrobial resistance to all previously-
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recommended therapies(50, 138, 172).  Unfortunately, resistance to this class of 

antimicrobial agent has already emerged (48). N. gonorrhoeae infections do not elicit 

protective immunity and there is evidence that gonococcal infections increase the spread 

of HIV(60, 188).  Since gonococcal disease poses a significant public health challenge, it 

is important to understand the pathogenesis of N. gonorrhoeae in order to identify new 

therapies.  

Iron is an essential macronutrient for most microorganisms including the 

Neisseriae (37). Many microorganisms acquire iron from the human host by synthesizing 

and secreting siderophores. Siderophores are low-molecular weight iron-chelating 

molecules that scavenge iron from the environment or host iron binding proteins.  N. 

gonorrhoeae does not synthesize siderophores but instead obtains iron directly from 

human iron binding proteins including transferrin, lactoferrin, and hemoglobin in a 

receptor-mediated mechanism (25, 53, 64, 163). Expression of either the transferrin or 

lactoferrin receptor by N. gonorrhoeae is necessary to establish infection in human male 

volunteers (5, 66). Gonococci can also hijack siderophores produced by other bacteria, 

which is known as xenosiderophore utilization. It has been previously demonstrated that 

strains of gonococci can obtain iron from the xenosiderophores enterobactin, aerobactin, 

and salmochelin, which are all synthesized by enteric bacteria (43, 273, 303).  

Iron acquisition is tightly regulated since excess iron can promote Haber-Weiss-

Fenton chemistry, creating highly reactive, toxic hydroxyl radicals within the cell (115). 

In many bacteria including N. gonorrhoeae, the ferric uptake regulator (94) acts as a 

transcriptional regulator for iron acquisition genes.  Under iron-replete (+Fe) conditions, 

a dimer of Fur binds to its co-repressor, ferrous iron, and assumes a DNA binding 
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conformation. The Fur-Fe2+ complex binds to a specific DNA sequence called the Fur 

box found in the promoter regions of iron regulated genes (13). Once Fur is bound to the 

Fur box it blocks gene transcription. As intracellular iron stores become depleted, apo-

Fur dissociates from the Fur box allowing RNA polymerase to bind to the promoter and 

transcribe the Fur regulated gene (83).  Gonococcal Fur not only regulates iron 

acquisition genes but also impacts the expression of a broad range of genes including 

those that encode Opa proteins, NADH dehydrogenase, sodium pumps and other 

transcriptional regulators (139).  The regulation of genes involved in iron acquisition, 

adhesion and metabolism establishes Fur as a global regulator (139, 264).   

Fur may not be the sole transcriptional regulator of iron acquisition systems in N. 

gonorrhoeae.  AraC-like regulators operate as both positive and negative regulators of 

iron acquisition systems in other microorganisms including Pseudomonas aeruginosa, 

Yersinia pestis, and Bordetella (16, 87, 127, 227).  In these microorganisms, the AraC-

like regulator functions as a transcriptional regulator of siderophore biosynthesis and 

acquisition genes.  The mechanism of AraC-like regulation of siderophore genes involves 

the cognate siderophore functioning as a co-inducer. The AraC-like regulator is under the 

transcriptional control of Fur and therefore AraC-like regulation occurs under iron 

deplete conditions. The gonococcal genome encodes multiple AraC-like regulators and it 

has been recently demonstrated that one of these regulators, MpeR (92) is Fur regulated 

(139).   

In this study, we demonstrate that MpeR, an iron-regulated AraC-like regulator is 

required for up-regulated expression of the outer membrane transporter, FetA, in 

gonococcal strain FA1090.  We also establish that fetA is part of an iron regulated operon 
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that encodes a periplasmic binding protein and components of a putative ABC transport 

system; however, only fetA but not the downstream genes require MpeR for detectable 

expression.  Additionally, we determined that gonococcal strain FA1090 acquires iron 

from enterobactin, enterobactin derivatives and salmochelin S2 in a FetA- and TonB-

dependent manner and identified genetic differences between strains that could clarify the 

Ton-dependent and Ton-independent pathway for xenosiderophore utilization. 

Expression of MpeR was necessary to achieve maximal growth on these siderophores, 

but none of the utilizable iron sources appear to act as a co-inducer for MpeR-dependent 

activation of fetA.  
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II. Results 

A. The mpeR mutant displays differential protein expression under iron-deplete 

conditions  The mpeR gene was originally identified by Folster et al. as encoding an 

AraC-like regulator that plays a role in the coordinate expression of hydrophobic agent 

efflux pumps (92).  We began investigating whether MpeR plays other regulatory roles in 

gonococci due to its proximity to a gene that encodes an uncharacterized TonB-

dependent transporter, TdfF(113).  We initially determined that mpeR was iron regulated, 

which was recently confirmed by Jackson et al. via microarray, FURTA assays, and the 

presence of a Fur box in its promoter (139).  We hypothesized that since MpeR is iron 

regulated, it could also regulate iron acquisition systems in gonococci, particularly the 

one putatively encoded by the tdfF locus. To test this hypothesis, the wild type (FA1090) 

and mpeR mutant (MCV304) were grown under iron-deplete (-Fe) and iron-replete (+Fe) 

conditions and total membrane protein fractions were isolated.  Using SDS-PAGE 

analysis, we determined that an 80 kDa protein was expressed by the wild-type strain 

only under iron-deplete conditions, but this protein was not detectable in the mpeR 

mutant strain (Figure 16A).  The 80 kDa band was excised from the gel and analyzed by 

mass spectrometry, which unambiguously identified the protein as FetA. Western blot 

analysis of total membrane proteins isolated from the wild type (FA1090), mpeR mutant 

(MCV304), fetA mutant (FA6959), and mpeRC (MCV305) grown under iron-deplete (-) 

and iron-replete (+) conditions were used to confirm the mass spectrometry results.  The 

wild-type and complemented strains grown under iron-deplete conditions expressed 

detectable levels of FetA, whereas neither the fetA mutant nor the mpeR mutant expressed 



www.manaraa.com

 

 

136

this protein (Figure 16B). From this analysis, we concluded that the iron-regulated AraC-

like regulator, MpeR, controls the expression of FetA in gonococcal strain FA1090.  
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Figure 16.  FetA expression is regulated by MpeR   
 
A) SDS-PAGE analysis of protein expression.  Total membrane proteins were isolated 
from WT (FA1090) and mpeR mutant (MCV304) strains grown under iron-deplete (-) 
and iron-replete (+) conditions for 4 hours.  Proteins were separated on a 7.5% 
acrylamide gel.  The arrow on the left indicates the band that was excised and identified 
as FetA by mass spectrometry analysis. The position of molecular weight markers is 
indicated on the right.  
  
B) Western blot analysis of FetA expression.  The WT (FA1090), mpeR mutant 
(MCV304),  fetA mutant (FA6959) and the complemented mpeRC strain (MCV305) were 
grown under iron-deplete (-) and iron-replete (+) conditions. Total membrane proteins 
from each strain were isolated and standardized before being separated by SDS-PAGE 
and then transferred to nitrocellulose. Blots were probed with an anti-FetA monoclonal 
antibody.  
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B. fetA transcription requires MpeR expression and iron-deplete growth conditions  

fetA, previously called frpB, encodes a TonB-dependent outer membrane transporter 

(FetA) that is immunogenic, and subject to Fur regulation (20, 43, 219, 283).  FetA was 

renamed by Carson et al. when they discovered that this transporter was necessary for 

efficient ferric-enterobactin transport (43). To determine whether MpeR transcriptionally 

regulates fetA, end-point relative RT-PCR was utilized to detect fetA and mpeR 

transcripts. RNA was isolated from gonococcal strains grown under iron-deplete (-) and 

iron-replete (+) conditions.  Transcripts from fetA and mpeR were detected in the wild-

type strain preferentially under iron-deplete conditions (Figure 17), consistent with 

previous published studies (44, 139). The fetA transcript was not detected in the mpeR 

mutant (MCV304).  In the mpeRC strain (MCV305), both mpeR and fetA transcripts were 

detected (Figure 17) indicating that the MpeR effect on fetA expression was restored by 

complementation.  Expression of mpeR in the mpeRC strain (MCV305) was iron 

regulated (Figure 17), consistent with the presence of iron-sensitive regulatory signals in 

the sequence upstream of the MpeR start codon, which were included in the 

complementation construct. Overall, these data allow us to conclude that MpeR is 

necessary for fetA expression under iron-deplete conditions.  



www.manaraa.com

 

 

140

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. MpeR activates fetA transcription under iron-deplete conditions  The WT 
(FA1090), fetA mutant (FA6959), mpeR mutant (MCV304), and the complemented 
mpeRC strain (MCV305) were grown under iron-deplete (-) and iron-replete (+) 
conditions.  RNA samples isolated from each gonococcal strain were analyzed for 
expression of fetA and mpeR by RT-PCR. 16S rRNA (16S) was used as a positive control 
because it was constitutively expressed under all growth conditions. Expression of 16S 
rRNA in the absence of reverse transcriptase, (16S (-)) was used as a negative control.  
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Real time RT-PCR was employed to confirm the end-point RT-PCR results and to 

quantify the level of gene expression.  All CT values were normalized to rmpM gene 

expression and then fold change was determined using the relative CT method (179). The 

rmpM gene encodes an outer membrane protein that is constitutively expressed under all 

growth conditions tested in this study.  In Table 4, the average fold change is shown, 

representing the comparison between expression under iron-deplete and iron-replete 

conditions or expression by wild-type and mutant under iron deplete conditions.  As 

expected, the fold change in expression under iron deplete vs. iron replete conditions was 

large for both fetA and mpeR (97-fold for fetA and 198-fold for mpeR; Table4).  When the 

wild type and its isogenic fetA mutant were compared, there was 194-fold more fetA 

expression in the wild type (Figure 18A).  mpeR expression was unaffected in the fetA 

mutantm (Figure 18).  When the wild type and the mpeR mutant were compared, there 

was a 117-fold change in fetA expression (Table 4), which is consistent with the inability 

to detect fetA transcripts in the mpeR mutant as observed by qualitative RT-PCR (Figure 

17).  As shown in Table 4 and Figure 18B, the restoration of the mpeR gene in the mpeRC 

strain resulted in mpeR expression levels that approached that of the wild-type (1.9 fold 

difference between wild-type and the mpeRC strain). Commensurate with the return of 

mpeR expression, we detected an increase in FetA expression in the mpeRC strain relative 

to the mpeR mutant (Table 4), again supporting the relative RT-PCR data (Figure 17).  

Together, the expression data support the previous observations that both fetA and mpeR 

are iron regulated (20, 139) and furthermore demonstrate that mpeR expression was not 

impacted by the fetA mutation. Results from the relative and real-time expression studies 

establish that when mpeR was absent,  fetA expression decreased and when mpeR 
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expression was restored by complementation with a wild-type copy, fetA levels returned 

to near wild-type levels under iron-deplete conditions. Cumulatively, these data indicate 

that MpeR is necessary for fetA transcription under iron-deplete conditions.  
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Figure 18. Real time RT-PCR analysis for MpeR activation of fetA expression under 
iron-deplete conditions   
 
A. Normalized fetA gene expression ratio. Average fold change of fetA expression for 
each comparison is shown. Bars represent the median fold change for the following 
comparisons: WT-Fe/WT+Fe (gray bars) WT-Fe/ FA6959-Fe (checkered bars), WT-
Fe/MCV304-Fe (horizontal striped bar), WT-Fe/MCV305-Fe (vertical striped bar) and 
WT-Fe/MCV306-Fe (white bar).   The median fold change is detected from three 
independently-conducted real time RT-PCR assays.  Numerical values from all three 
assays indicated in Table 4.  
 
B. Normalized mpeR gene expression ratio. Average fold change of mpeR expression for 
each comparison is shown. Bars represent the median fold change for the following 
comparisons: WT-Fe/WT+Fe (gray bars) WT-Fe/ FA6959-Fe (checkered bars), WT-
Fe/MCV304-Fe (horizontal striped bar), WT-Fe/MCV305-Fe (vertical striped bar) and 
WT-Fe/MCV306-Fe (white bar).   The median fold change is detected from three 
independently-conducted real time RT-PCR assays. Numerical values from all three 
assays indicated in Table 4.  
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TABLE 4.  Effects on fetA and mpeR expression measured by real time RT-PCR. 
 

 
1 Average fold change for each comparison is shown, with the range detected among 

three independently-conducted real time RT-PCR assays shown in parentheses. 
 

Comparison Normalized target gene expression ratio 
 fetA mpeR 

WT-Fe / WT+Fe 97 (103-83)1 198 (301-106) 
WT-Fe / FA6959-Fe 194 (209-167) 2.2 (3.1-.6) 
WT-Fe / MCV304-Fe 117 (185-33) 62 (123-46) 
WT-Fe / MCV305-Fe 9.6 (15-5) 1.9 (2.4-1.3) 
WT-Fe / MCV306-Fe 108 (154-70) 37 (45-26) 

A 

B 
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C. Specific binding of MpeR to DNA upstream of fetA   

In order to determine whether MpeR-dependent fetA regulation occurred as a 

result of direct interaction, we used EMSA to test whether MpeR bound to target DNA 

sequences upstream of the FetA start codon.  Results from preliminary EMSA 

experiments using increasing amounts of MBP-MpeR (1-10 µg) incubated with the 

radiolabeled fetA probe showed shifting of a DNA fragment of 500 bp in length (data not 

shown).  This upstream region was further divided into two smaller DNA fragments of 

250 bp in length (Figure 18A), both of which were tested for MpeR interaction by 

EMSA. The probe fragment corresponding to the most upstream portion of the intergenic 

region (fetA1, Figure 19A) was shifted by addition of MpeR protein (Figure 19B). 

However, the probe fragment corresponding to the sequence immediately preceding the 

fetA start codon (fetA2; Figure 19B) was not shifted in the presence of MpeR (data not 

shown). In order to determine whether MpeR binding upstream of fetA was specific, a 

competitive EMSA experiment was performed in which increasing amounts (2-20X) of 

excess unlabeled specific (fetA) or non-specific (rnpB) DNA fragments were added to the 

binding reaction.  The results demonstrate that the specific competitor, but not the non-

specific competitor, reduced binding of MpeR to the labeled fetA probe (Figure 19B).  

The unlabeled fetA2 sequence modestly competed with the binding of MpeR to the fetA1 

probe, suggesting that MpeR may bind preferentially to fetA1 sequence and with a lower 

affinity to the fetA2 sequence. Cumulatively, these results allow us to conclude that 

binding of MpeR to the DNA sequence upstream of fetA is specific and that its capacity 

to activate fetA expression is likely by a direct mechanism.   
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Figure 19. MpeR binds upstream of fetA in a specific manner  
 
A) Sequence of the 500-base pair, intergenic region immediately upstream of fetA. The 
sequence highlighted in teal is contained within the fetA1 probe employed for the EMSA 
shown in panel B. The sequence highlighted in yellow is contained within the fetA2 
competitor DNA. The sequence highlighted in blue is contained in both fetA1 and fetA2 
amplicons.  The Fur-binding site (139) is highlighted in gray. The previously-mapped 
(14) promoter elements (underlined) and transcriptional start site (asterisk below 
nucleotide) are identified. The start codon for FetA is shown in red.   
 
B) 5 nanograms of the 250-base pair, labeled fetA1 probe (lane 1) was incubated with 10 
µg of MBP-MpeR in the absence of unlabeled competitor (lane 2) or in the presence of 2, 
10 or 20X excess unlabeled competitor DNA. Lanes 3-5 contain reactions including 
increasing concentrations of the specific competitor (fetA1); lanes 6-8 contain reactions 
including increasing concentrations of fetA2; and lanes 9-11 contain reactions including 
increasing concentrations of the non-specific competitor, rnpB.   
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D. fetA is part of an iron responsive operon that is differentially affected by MpeR 

expression   

The DNA region downstream of fetA encodes putative xenosiderophore 

acquisition genes (Figure 20A). The genes downstream of fetA include: fetB, which 

encodes a putative periplasmic binding protein; ng2091 and ng2090, which encode two 

predicted permease proteins; and ng2088, encoding an ATP binding protein. The latter 

three genes are therefore predicted to form an ABC transport complex.  ng2089 encodes 

an uncharacterized protein.  Most siderophore acquisition systems are co-transcribed and 

all genes involved in the system are coordinately regulated.  Therefore, end point RT-

PCR was utilized to determine if fetA and the downstream genes were co-transcribed and 

also activated by MpeR.  Primers were designed to amplify the intergenic regions 

between each gene in the hypothetical operon (Figure 20A).  RNA was isolated from 

gonococcal strains grown under iron-deplete (-) and iron-replete (+) conditions.  In the 

wild-type strain (FA1090) all amplicons were detected under iron-deplete conditions 

(Fig. 19B) indicating that fetA and downstream genes are part of an iron regulated 

operon.  Interestingly, the fetA mutant, which contains a polar Ω (228) insertion in the 

fetA gene, maintained the ability to express all of the downstream putative genes (Figure 

20B).  Similar results were observed in the mpeR mutant, in which genes fetB-NG2088 

was co-transcribed under iron-deplete conditions (Figure 20B).  A fetA mpeR double 

mutant strain was also employed to investigate co-transcription of the ABC transport 

genes.  Again, the downstream putative transport genes, in the absence of both fetA and 

mpeR were all transcribed under iron-deplete conditions (Figure 20B).  Finally, when the 

mpeR mutant was complemented with the wild-type mpeR gene,  fetA and the 
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downstream co-transcripts were detected under iron-deplete conditions, similar to the 

wild-type strain. Based on these RT-PCR results, we propose that the wild-type strain 

produces two different transcripts under iron-deplete conditions (Figure 20A). One 

transcript encodes fetA-ng2088 whereas the other transcript encodes fetB-ng2088, 

expression of which is iron regulated but not qualitatively affected by MpeR (Figure 

20A). 
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Figure 20.  FetA is encoded as part of a multi-gene operon 
 A) Genetic locus including fetA and downstream genes.  Genes are depicted by boxes. 
Hatched regions 5’ of fetA and fetB indicate approximate locations of Fur boxes (139). 
Below the chromosomal locus are small dark arrows indicating primer locations. 
Numbered black bars denote the amplicons generated from each primer set. Long, dark 
gray arrows indicate length and start positions of two proposed transcripts.  
 
B) RT-PCR analysis of the fet operon.  RNA was isolated from the indicated gonococcal 
strains which were grown under iron deplete (-) and iron replete (+) conditions.  
Amplicon numbers correspond to the diagram in panel A.  16S rRNA (16S) was used as a 
positive control because it is constitutively expressed under all conditions test. 
Expression of 16S rRNA in the absence of reverse transcriptase, (16S (-)) was used as a 
negative control.  
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 The fetA transcriptional start site was previously mapped (44) and is identified in Figure 

18. To confirm the presence of a second transcriptional start site upstream of fetB, we 

employed primer extension analysis. As shown in Figure 21, we identified a 

transcriptional start site downstream of several possible -10 sequences, within the 

previously-identified Fur binding site (139).  The transcript starting with fetB was 

modestly iron regulated and the initiation site is located 72 nucleotides upstream of the 

FetB start codon.  
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Figure 21. Identification of the fetB transcription start site  
 
A) Sequence of the intergenic region immediately upstream of fetB.  The ATG at the end 
of the sequence represents the FetB start codon. Several overlapping, potential -10 
promoter elements are underlined. The Fur-binding site (139) is highlighted in gray. The  
transcriptional start site identified in this analysis is identified by the asterisk.   
 
B) Primer extension products generated from RNA samples harvested from wild-type 
gonococcal strain FA1090 grown under iron replete (+Fe) and iron deplete (-Fe) 
conditions.  Equivalency of the amount of RNA template in each sample was confirmed 
by ethidium bromide staining of RNA separated on an agarose gel. For comparison, the 
sequencing reaction using the same primer as was used for the primer extension reaction, 
is shown on the left. The T residue highlighted by the asterisk marks the point of 
transcript initiation on the non-coding strand. 
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To establish whether mpeR or fetA interruption quantitatively impact expression 

of the downstream ABC transport genes, real-time RT-PCR was employed. ng2091 is the 

first gene transcribed downstream of the gene encoding the putative periplasmic binding 

protein (fetB) (Figure 19A). The same RNA samples isolated for qualitative RT-PCR 

(Figure 18B) were used for real-time RT-PCR analysis. All CT values were normalized to 

rmpM gene expression.  In Table 5 and Figure 22, the average fold change is shown, 

representing the comparison between expression under iron-deplete and iron-replete 

conditions or expression by wild-type and mutant under iron deplete conditions.  As 

shown in Table 5, ng2091 gene expression was iron repressed; 16.3 fold more transcript 

was detected under iron deplete conditions. When the wild-type and mutant strains were 

compared, we observed that ng2091 gene expression levels were 23-fold higher in the 

wild type relative to the fetA mutant (Figure 22). Similarly, ng2091 expression was 22.3-

fold higher in the wild type relative to the mpeR mutant. The wild-type strain expressed 

11.5-fold more ng2091 transcript than the fetA mpeR double mutant (Table 5).  The 

mpeRC strain expressed more ng2091 transcript than did the mpeR mutant, as expected 

(Figure 22). Cumulatively, these results indicate that fetA is part of an iron-regulated 

operon encoding a putative periplasmic binding protein and ABC transport system. The 

quantitative expression studies suggest that the ABC transport system is not as tightly 

iron regulated as is either fetA or mpeR, which is consistent with the transcriptional start 

site mapping data presented in Figure 21. Furthermore, the real-time RT-PCR data 

indicate that expression of ng2091 is activated by MpeR, but that the extent of this 

activation is not as great as was detected for fetA.  
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Figure 22.  Real time RT-PCR of ng2091  
Normalized ng2091 gene expression ratio. Average fold change of ng2091 expression for 
each comparison is shown. Bars represent the median fold change for the following 
comparisons: WT-Fe/WT+Fe (gray bars) WT-Fe/ FA6959-Fe (checkered bars), WT-
Fe/MCV304-Fe (horizontal striped bar), WT-Fe/MCV305-Fe (vertical striped bar) and 
WT-Fe/MCV306-Fe (white bar).   The median fold change is detected from three 
independently-conducted real time RT-PCR assays. Numerical values from all three 
assays indicated in Table 5.  
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TABLE 5.  Effects on gene expression measured by real time RT-PCR. 
 

 
1 Average fold change for each comparison is shown, with the range detected among 

three independently-conducted real time RT-PCR assays shown in parentheses. 
 

 

 

 

 

 

Comparison Normalized target gene expression ratio 
 ng2091 

WT-Fe / WT+Fe 16.3 (17-16) 
WT-Fe / FA6959-Fe 23 (28-16) 
WT-Fe / MCV304-Fe 22.3 (24.22)  
WT-Fe / MCV305-Fe 7.1 (9.7-5) 
WT-Fe / MCV306-Fe 11.5 (16-9)  
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E. Xenosiderophore-iron acquisition by gonococcal strain FA1090 

N. gonorrhoeae does not produce siderophores; however, the pathogen is capable 

of utilizing siderophores synthesized by other microorganisms (43, 273, 303).  In 

gonococcal strain FA1090, Carson et al. demonstrated that FetA functions as a receptor 

for the xenosiderophore enterobactin (43).  Enterobactin is a cyclic catecholate 

siderophore composed of three 2,3-dihydroxybenzoylserine (DHBS) subunits and was 

first characterized in E. coli. Enterobactin derivatives including the DHBS monomer 

(D1), the DHBS dimer (D2), and the DHBS trimer (D3) have also been identified as 

siderophores secreted by E. coli (118, 209).  Carson et al. determined that enterobactin is 

utilized by gonococcal strain FA1090 in a FetA- and TonB-dependent manner (43). We 

tested whether strain FA1090 could also utilize other xenosiderophores in a similar 

manner.  Since MpeR activates fetA expression, MpeR was predicted to affect catecholate 

utilization in gonococcal strain FA1090 as well.   

Plate bioassays were employed to measure siderophore-dependent growth of 

gonococcal strain FA1090. We tested a variety of siderophores including: ornibactin, 

aerobactin, ferrichrysin, ferrirubin, coprogen, neocoprogen, enterobactin, DHBS and 

salmochelin for growth support. We found that ferrichrysin, ferrirubin, coprogen and 

neocoprogen did not support growth at all. Ornibactin and aerobactin supported growth 

but only in a TonB-independent fashion (data not shown). Thus we focused on the 

catecholate-type siderophores including: enterobactin, DHBS monomer (D1), DHBS 

dimer (D2), DHBS trimer (D3), salmochelin S4 (a cyclic, diglucosylated form of 

enterobactin), and the linear derivative of salmochelin (S2) (202). We evaluated 

xenosiderophore utilization in the wild type, the tonB mutant, the fetA mutant, the mpeR 
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mutant, the mpeRC strain, and the double fetA mpeR mutant.  Ferric citrate was used as a 

positive control and bovine transferrin was used as a negative control since gonococci 

cannot utilize iron bound to non-human transferrin (10, 163).  Figure 23 shows the 

average growth zone in millimeters detected around each iron source with standard 

deviation reflecting the variability within four or five independently-conducted 

experiments, each of which was performed in triplicate. As previously shown by Carson 

et al. (43), gonococcal strain FA1090 grows in the presence of enterobactin (Figure 23). 

Enterobactin-dependent growth by the fetA and tonB mutants was reduced to just above 

background levels (dotted line, Figure 23).  Enterobactin-dependent growth by the mpeR 

mutant was also decreased relative to the wild-type strain, although growth inhibition was 

not as great as was observed with the fetA and tonB mutant strains.  Enterobactin-

dependent growth in the mpeRC strain was near wild-type amounts, consistent with the 

recovery of MpeR regulatory function in this strain. The double fetA mpeR mutant was 

severely restricted in enterobactin-dependent growth. These findings are consistent with 

those of Carson et al. (43), but further extends our observation that MpeR activates FetA 

expression, and leads to an enhanced ability to utilize the xenosiderophore enterobactin.   
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Figure 23. Xenosiderophore utilization by gonococcal strain FA1090 
CDM plates were supplemented with apo-bovine transferrin and wells within the plates 
were inoculated with 10µl of the following siderophores:  ENT: enterobactin; D1: 
dihydroxybenzoylserine (DHBS); D2: the dimer form of DHBS; D3: the trimer form of 
DHBS; S2: the linear derivative of salmochelin; and S4: the cyclized form of 
salmochelin.   Ferric citrate (+) was used as the positive control and apo-bovine 
transferrin (-) was used as the negative control as indicated along the x-axis of the graph. 
Each bar indicates the average growth in millimeters around each siderophore source; the 
average and standard deviations were determined from seven independent experiments, 
each conducted in triplicate.  Bars represent average growth zone for the following 
strains: wild type FA1090 (black bars),  fetA mutant strain FA6959 (checkered bars), 
tonB mutant strain MCV656 (gray bars), mpeR mutant strain (white bars), and mpeRC 
complement strains  (striped bars). The horizontal dotted line indicates the diameter of 
the well containing each iron source.   Pairwise comparisons between the wild-type and 
mutant strains resulted in the following P-values: * < 0.001; # = 0.0124; ^ = 0.0197.  
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As shown in Figure 23, our analysis additionally demonstrates that gonococcal 

strain FA1090 can employ the enterobactin derivatives D2 and D3 in a FetA- and TonB-

dependent manner. As was detected with enterobactin, use of these enterobactin 

derivatives was also maximized when MpeR was expressed. The mpeR mutant was 

capable of less growth around D2 and D3 (Figure 23) relative to the wild-type strain and 

complementation of the mpeR mutation led to an increase in D2- and D3-dependent 

growth.  Interestingly, there was also a significant decrease in salmochelin S2-dependent 

growth by both the fetA mutant and tonB mutant, indicating that FA1090 utilized 

salmochelin S2 in a FetA-and TonB-dependent manner as well. These results 

demonstrate that gonococcal strain FA1090 is capable of employing enterobactin, the 

DHBS dimer (D2) and trimer (D3) derivatives and salmochelin S2 as iron sources.  FetA, 

TonB and MpeR are critical for this process, consistent with the ability of MpeR to 

induce expression of FetA.  This is the first demonstration that gonococcal strain FA1090 

utilizes DHBS dimers and trimers and salmochelin S2 as iron sources and that this uptake 

pathway depends upon expression of FetA, TonB, and MpeR activation. While 

salmochelin S4 was not utilized by any FA1090 variants tested in this analysis, the 

DHBS monomer was employed by all strains, both mutant and wild-type. These results 

imply that FA1090 does not have the capacity to internalize salmochelin S4 but can 

import DHBS in a TonB- and FetA-independent pathway.   
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F. ABC transport genes NG2088 and NG2090 are necessary for xenosiderophore 

acquisition 

 The ABC transporters are ubiquitous membrane proteins that couple adenosine 

triphosphate (ATP) hydrolysis to the translocation of diverse substrates across cell 

membranes. In a classical transport reaction, two highly conserved ATP-binding domains 

or subunits couple the binding/hydrolysis of ATP to the translocation of particular 

substrates across the membrane, through interactions with membrane-spanning domains 

of the transporter (72). In siderophore acquisition, once the siderophore is bound to the 

periplasmic binding protein, it must be transported into the cytoplasm. This is 

accomplished by an ABC transporter protein complex. Bacterial ABC transporters 

commonly consist of four structural domains: two transmembrane domains that form a 

channel through which the ferric-siderophore passes through and two nucleotide binding 

domains that hydrolyze ATP. The Fet operon encodes the periplasmic binding protein 

fetB as well as a putative ABC transport system encoded by ng2091-ng2088 (Figure 

20A).  We were interested in the impact these ABC transport genes have on siderophore 

acquisition. Employing the plate bioassay we investigated the growth of two ABC 

transport mutant strains and compared growth to the wild type strain.  A polar omega 

cassette was cloned into ng2088 which encodes an ATP binding protein to construct a 

mutant ng2088 strain (FA7029). The same omega cassette was also cloned into ng2090 

which encoded a transmembrane permease to construct the ng2090 mutant strain 

(FA7241).  We tested the acquisition of the following catecholate-type siderophores 

including: enterobactin, DHBS monomer (D1), DHBS dimer (D2), DHBS trimer (D3), 

salmochelin S4 (a cyclic, diglucosylated form of enterobactin), and the linear derivative 



www.manaraa.com

 

 

165

of salmochelin (S2) (202). Growth zones indicated utilization of the iron source tested 

with the limit of detection of 8mm indicated by a dotted line (Figure 24). Figure 24 

shows the mean and standard deviation from four independent experiments that were 

each performed in triplicate. We observed an attenuated growth pattern in the presence of 

the catecholates with the exception of DBHS monomer (D1) for both mutants when 

comparing growth zones to the wild type strain (FA1090).  This is not surprising, since 

the omega cassette is polar, the ng2090 mutant is not expected to express any of the 

genes downstream including ng2088. Both ABC transport mutants exhibit growth similar 

to the tonB and fetA mutants (Figure 23) in which growth was significantly attenuated in 

the presence of enterobactin, DHBS dimer (D2), DHBS trimer (D3), and salmochelin S2. 

Interestingly, growth in the presence of DHBS monomer (D1) was attenuated but this 

difference did not reach a level of statistical significance.  Growth above the threshold of 

detection was observed in these ABC transport mutants similar to the tonB and fetA 

mutant strains implying that an alternative pathway may be utilized for low levels of 

xenosiderophore acquisition in these mutant strains.  Furthermore, these results indicate 

that the entire ABC transport system operon must be expressed for optimal levels of 

xenosiderophore utilization and that as in all ABC transport systems, the ATP binding 

protein plays a crucial role in transport. When the ATP binding protein encoded by 

ng2088 was mutangenized, the mutant strain (FA7021), only supported very low levels of 

growth compared to the wild type strain (FA1090). The ATP-binding cassettes power the 

transporter by binding and hydrolyzing ATP (71). It is presumed that in the absence of 

ng2088, ABC transport through this system cannot occur, due to a lack of energy.   
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Figure 24. Xenosiderophore utilization by gonococcal strain FA1090 ABC transport 
mutants 
CDM plates were supplemented with apo-bovine transferrin and wells within the plates 
were inoculated with 10µl of the following siderophores:  ENT: enterobactin; D1: 
dihydroxybenzoylserine (DHBS); D2: the dimer form of DHBS; D3: the trimer form of 
DHBS; S2: the linear derivative of salmochelin; and S4: the cyclized form of 
salmochelin.   Ferric citrate (+) was used as the positive control and apo-bovine 
transferrin (-) was used as the negative control as indicated along the x-axis of the graph. 
Each bar indicates the average growth in millimeters around each siderophore source; the 
average and standard deviations were determined from four independent experiments, 
each conducted in triplicate.  Bars represent average growth zone for the following 
strains: wild type FA1090 (black bars), ng2088 strain (FA7029) (checkered bars), ng2090 
mutant strain (FA7241) (white bars with black dots). The horizontal dotted line indicates 
the diameter of the well containing each iron source.   Asterisks (*) indicate significant 
values from pairwise comparisons between the wild-type and mutant strains at P-values:  
< 0.001  
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G. Xenosiderophores that support growth do not serve as co-inducers for MpeR-

dependent fetA activation   

AraC-like transcriptional regulators are distinguished by a C-terminal helix-turn-

helix motif, which is responsible for DNA binding.  These regulators also contain an N-

terminal binding site to which activator molecules bind conferring specificity on 

regulation (97). MpeR, an AraC-like regulator, enhances fetA transcription (Figures 17 

and 18) and MpeR binds to the region upstream of the fetA gene (Figure 19). Gonococcal 

strain FA1090 can utilize enterobactin, DHBS, and salmochelin S2 as iron sources 

(Figure 22). Given these findings, we tested whether these xenosiderophores could serve 

as co-inducers for MpeR-dependent FetA activation.  Western blot analysis was utilized 

to investigate FetA expression when gonococci were grown in the presence of ferrated 

catecholates. The wild-type strain was grown in the presence of the ferrated forms of 

enterobactin, DHBS monomer (D1), DHBS dimer (D2), DHBS trimer (D3), salmochelin 

S4, and salmochelin (S2).  Every two hours, aliquots were removed from the cultures, 

and standardized to cell density.  FetA expression was analyzed by SDS-PAGE and 

western blot analysis. FA1090 grown in the presence of all tested siderophores except 

salmochelin S4 exhibited FetA expression levels similar to that detected under iron-

replete conditions (Figure 25A).  The wild-type strain, grown in the presence of S4, 

exhibited similar FetA expression levels to those expressed when grown in iron-deplete 

conditions (Figure 25A). To determine whether the decrease in FetA expression was 

siderophore specific or due to iron status, we analyzed TbpA expression from the same 

cultures. TbpA is a Fur regulated, outer membrane transporter of iron from human 

transferrin (64).  TbpA expression mirrored that of FetA as a function of growth on 
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xenosiderophores (Figure 25A).  As observed for FetA, TbpA expression was greatest in 

the presence of S4 and when strains were grown under iron-deplete conditions (Figure 24 

A). As shown in Figure 23, salmochelin S4 did not support the growth of FA1090. Thus 

the increase in FetA expression in the presence of salmochelin S4 is due to iron stress 

rather than S4 serving as a co-inducer for MpeR in the activation of FetA.  Furthermore, 

the other siderophores and derivatives that supported growth resulted in high internal iron 

pools and consequently resulted in repression of FetA. We repeated this experiment, 

replacing the ferrated siderophores with the iron-free forms during gonococcal growth 

(Figure 25B). As seen with the ferrated-xenosiderophores, there was no evidence of 

siderophore-dependent induction as all strains expressed FetA at levels similar to those 

detected in iron depleted growth conditions. Cumulatively, these results suggest that FetA 

expression is sensitive to the iron status of the cell and that the presence of the 

xenosiderophores, either in ferrated or iron-free form, did not further influence FetA 

expression. 
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Figure 25. FetA expression is not induced by the presence of xenosiderophores 
 
A)  WT (FA1090) was grown in CDM with the indicated ferrated-xenosiderophores 
(final concentration of 10 μM) as the sole iron source. The following ferric-
xenosiderophores were tested:  ENT: enterobactin; D1: dihydroxybenzoylserine (DHBS); 
D2: the dimer form of DHBS; D3: the trimer form of DHBS; S2: the linear derivative of 
salmochelin; and S4: the cyclized form of salmochelin. As controls the WT strain was 
grown in the absence of iron (-) or with ferric nitrate (+) but without the addition of 
siderophores. Aliquots collected at 2, 4 and 6 hours (indicated above the blots) were lysed 
and subjected to SDS-PAGE. After separation, proteins were transferred to nitrocellulose.  
Blots were probed with anti-FetA (top) or anti-TbpA antibodies (bottom).   
 
B) As in panel A, except the WT (FA1090) was grown in CDM with the indicated 
xenosiderophores in the iron-free or apo form. 
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III. Discussion 

MpeR was first identified by Folster and Shafer as a homolog of other AraC-like 

regulators (92). MpeR was originally described as a transcriptional regulator of the mtrF 

gene, which encodes a protein that modulates antimicrobial efflux pump activity in 

gonococcal strain FA19.  In the present study, we determined that in contrast to its 

repressive action on mtrF, MpeR activates fetA transcription under iron-deplete 

conditions. While MpeR clearly plays a role, other regulators or co-factors may also be 

involved in controlling fetA expression. Importantly, this is the first example of an AraC-

like regulator that is involved in the regulation of an outer membrane xenosiderophore 

transporter in N. gonorrhoeae.  Thus, the transcriptional regulatory activities of MpeR 

impact at least two important properties needed for survival of gonococci during 

infection: efflux of host-derived antimicrobials by the Mtr system (92) and 

xenosiderophore-iron acquisition via FetA.  In the context of the present work, we 

suggest that MpeR regulation of fetA may aid in gonococcal immune evasion.  Anti-FetA 

antibodies are present in sera from patients convalescing from meningococcal disease and 

these antibodies are cross-reactive against gonococcal strains (3, 27).  In addition, 

monoclonal antibodies against FetA are bactericidal in the presence of human 

complement (219). Therefore, continuous, unregulated FetA expression during the 

entirety of an infection is expected to elicit a host response that would inhibit the bacteria 

from thriving in vivo.  Thus fetA expression is expected to be tightly controlled.   

In the current study, we determined that enterobactin and DHBS dimers (D2) and 

trimers (D3) were utilized by strain FA1090 in a FetA- and TonB-dependent manner. 

MpeR-dependent activation of FetA enhanced the ability of FA1090 to employ these 
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xenosiderophores as sole iron sources. We also observed that the ABC transport system 

co-transcribed with FetA is important for xenosiderophore utilization as mutations in 

ng2090 and ng2088 resulted in reduced growth in the presence of the siderophores. While 

the ability of N. gonorrhoeae to utilize enterobactin had been previously recognized (43), 

this is the first demonstration that gonococci can use DHBS dimers (D2) and trimers (D3) 

as iron sources. Like enterobactin, these enterobactin derivatives were employed by wild-

type FA1090 in a FetA-, TonB-, and MpeR-dependent mechanism. This is somewhat 

surprising since these siderophores are internalized via distinct TonB-dependent 

transporters in other Gram-negative bacteria (98, 316)  Moreover, strain FA1090 can also 

employ the xenosiderophore salmochelin S2 in the same FetA-dependent pathway. The 

broad specificity of FetA for all four xenosiderophores is remarkable, as their import into 

E. coli is facilitated by four distinct transporters, including FepA, Cir, FiuA and IroN (98, 

316).  Carson et al. (43) noted that the sequence of FetA from gonococcal strain FA1090 

retained those residues known to be important for enterobactin binding to FepA (51); 

however, the spacing between the conserved residues was distinct. In addition, the 

binding affinity of FetA for enterobactin was found to be much weaker (43) than that 

described for E. coli FepA (42).  Thus we propose that FetA and the downstream ABC 

transport system has evolved as a gonococcal transporter capable of importing a broad 

spectrum of catecholate-type xenosiderophores, perhaps at the expense of high affinity 

interactions with any single siderophore.  

Salmochelin is known as a "stealth siderophore" and is derived by glucosylation 

of enterobactin via the products of the iroA locus (202). Virulent pathogens, including 

uropathogenic E. coli, Salmonella enterica, and Shigella dysenteriae harbor the iroA 
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locus, sometimes on pathogenicity islands (215).  Modification of the enterobactin 

molecule by addition of two glucose molecules leads to increased hydrophilicity and to 

the ability of salmochelin to evade the host's innate immune response. In the human host, 

enterobactin is sequestered and made ineffectual by the innate immunity protein, 

siderocalin (also known as lipocalin 2), whereas salmochelin is not (89, 101). Thus, 

salmochelin production by pathogens allows for efficient iron acquisition in the presence 

of siderocalin (235), which is found in lymphocytes. Salmochelin S4 is a cyclic form of 

the siderophore and salmochelin S2 is the linear derivative of S4; both forms coordinate 

iron and can be employed as "stealth siderophores".  Gonococcal strain FA1090 did not 

utilize iron from salmochelin S4 but did obtain iron from S2. As microbial producers of 

enterobactin, DHBS and salmochelin inhabit the same niche as the gonococcus (80, 230), 

it seems likely that the ability to hijack these siderophores, in the presence of neutrophil-

derived siderocalin, enhances the survival of N. gonorrhoeae in vivo. 

Interestingly, our laboratory has observed differences in xenosiderophore 

utilization among gonococcal strains.  Strain FA19 utilizes enterobactin, D1, and S2 in a 

TonB- and FetA-independent mechanism that requires expression of the FbpABC system 

(273).  In the current study, we demonstrated that FA1090 utilizes D1 in a TonB- and 

FetA-independent mechanism. However, FA1090 utilizes enterobactin, D2, D3, and 

salmochelin S2 in a FetA- and TonB-dependent manner.  Our hypothesis is that the 

differences in xenosiderophore utilization phenotypes between strains are due to two 

different pathways by which iron from xenosiderophores can be transported into the 

gonococcus. One pathway is TonB- and FetA-dependent while the other pathway is 

TonB-independent and requires the FbpABC system. In gonococcal strain FA1090, the 
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fetA and tonB mutants were capable of significantly less growth with enterobactin, D2 

D3, and S2 relative to the wild-type strain; however, both mutants exhibit 

xenosiderophore-dependent growth above background (dotted line in Figure 23).  Growth 

was diminished but not abolished in the tonB and fetA mutant strains; therefore we 

hypothesize that the FbpABC-dependent, Ton-independent pathway is also employed by 

these mutants in the FA1090 background.  In further support of this hypothesis, Carson et 

al. demonstrated that both fetA and fetB mutants of FA1090 exhibited a decrease in 

growth in the presence of enterobactin but growth was not abolished(43). Similar results 

were also observed with the tonB mutant in the previous study (43).  Thus, some iron was 

transported into the fet and tonB mutants in an energy- and  fet operon-independent 

pathway.  The difference in xenosiderophore-dependent growth between FA19 and 

FA1090 is likely due to differential use of these two distinct pathways. Gonococcal strain 

FA19 seems to be limited to use of the TonB-independent pathway that employs the 

FbpABC system for iron transit through the periplasm and cytoplasmic membrane.  A 

possible explanation for the exclusive use of Ton-independent pathway in strain FA19 

could be related to the observation that the genome sequence of gonococcal strain FA19 

contains a frame-shift mutation within ng2090. We have confirmed by direct sequencing 

of a PCR product amplified from FA19 chromosomal DNA that this lesion represents a 

genuine mutation and is not a genome sequencing error (Figure 26). This mutation would 

result in a truncated Ng2090 protein and may prevent expression of downstream genes as 

well (65). Similar to the attenuated growth we observed in gonococcal mutant ng2090 

strain (FA7041) we detect attenuated growth of FA19 on the xenosiderophores. 

Therefore, we hypothesize that this genetic difference between strains FA1090 and FA19 
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results in a defective Fet system and a reliance on the TonB-independent uptake pathway 

for uptake of iron from xenosiderophores in strain FA19 (65). 
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Figure 26. Amino Acid Sequence alignment of Ng2090  
Amino acid sequence alignment of Ng2090 from gonococcal strain FA1090 and FA19. 
Amino acid position indicated above each line, gray shading with black font indicates 
100% identical sequence. Black font with white background indicates not identical and 
dash marks indicate lack of sequence in strain FA19.  
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              50 
FA1090  MPSEKNIGFMAGSSRPLRVAFALLLVSCILFMTLNVKGDWDFVLHLRLTK 
FA19      MPSEKNIGFMAGSSRPLRVAFALLLVSCILFMTLNVKGDWDFVLHLRLTK 
 
               100 
FA1090  LAALLMVAYAVGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFG 
FA19      LAALLMVAYAVGVSTQLFQTLTNNPILTPSILGFDSLYVFLQTLLVFTFG 
           
                   101                                                                                                                   150 
   FA1090  GVGYTSLPLTGKFGFELVVMMGGSLLLFYTLIRQGGRDLPHMILIGVIFG 
   FA19      GVGYTSLPLTGKFGFELVVMMGGSLLLFYTLIRQGGRDLPHMILIGVIFG 
           
                 151                                                                                                                    200 
   FA1090 ILFRSLSSLLSRMIDPEEFTAAQANMFAGFNTVRSELLGIGALVLLVSAA 
   FA19     ILFRSLSSLLSRMIDPEEFTAAQANMFAGFNTVRSELLGIGALVLLVSAA 
           
                  201                                                                                                          250 
   FA1090  VVWHERYRSDVHLLGRDQAVNLGISYTRNTLWILLWIAALVATATAVVGP 
   FA19      VVWRERYRSDVHLLGRDQAVNLGISYTRNTLWILLWIAALVATATAVVGP 
           
                   251                                                                                                                       300 
   FA1090  VSFFGLLAASLANHFSPSVRHSVRLPMTVCVGGILLVGGQTVFEHFLGMK 
   FA19      VSFFGLLAASLANHFSRPCAIPSACR------------------------------------------------ 
           
                   301                                              324 
   FA1090  AVLSVVVEFAGGLVFLYLVLKHKK 
   FA19      ---------------------------------------------- 
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In N. gonorrhoeae, the fetA gene is the only TonB-dependent transport system 

that is also encoded with a periplasmic binding protein and a complete set of ABC 

transport genes (fetB-ng2088). Data presented in the current study suggest that the 

putative periplasmic binding protein and ABC transport system are co-transcribed with 

fetA, but also independent of FetA and MpeR. Expression of the shorter transcript 

encoding fetB-ng2088 was detected only in gonococci grown in iron-deplete conditions.  

A Fur box upstream of fetB was identified by FURTA and EMSA assays (139), 

consistent with our finding of a separate iron-regulated transcript including the fetB-

ng2088 genes.  The FetA-independent but iron regulated transcription of the ABC 

transport genes suggests that the ABC transport system could be utilized by other TonB-

dependent transporters, in addition to FetA.  

Enterobactin, D2, D3, and salmochelin S2 were acquired by gonococcal strain 

FA1090, which led us to consider the possibility that one or all of these xenosiderophores 

could serve as a co-inducer of MpeR for the activation of fetA expression. However, 

contrary to our hypothesis, FetA expression was not altered by the presence of any of the 

siderophores tested, regardless of their iron status.  We are currently entertaining three 

possible mechanisms to explain these results. First, MpeR may not require a co-inducing 

molecule in order to activate FetA expression. Second, because MpeR is involved in 

modulating the expression of proteins involved in antimicrobial efflux, the co-inducing 

agent for MpeR-dependent regulation could be related to efflux. In this context, since the 

Mtr system is necessary for efflux of host-derived antimicrobials, MpeR might sense an 

efflux substrate as a signal of location within the host. And third, other catechols might 



www.manaraa.com

 

 

180

serve as co-inducers with MpeR. Given the broad specificity of FetA, it is possible that 

an as yet unrecognized catecholate molecule could serve as an inducer and also provide 

iron in a FetA-dependent manner.  

 The mpeR gene has only been identified in the genomes of the pathogenic 

Neisseria and is absent from the genomes of commensal Neisseria (184, 266). The MpeR 

proteins are highly conserved, sharing 97-100% sequence identity among the pathogenic 

Neisseria species (data not shown).  This conserved, pathogen-specific regulator controls 

the expression of FetA, which is a pan-Neisseria transporter (184).  In Staphylococcus 

aureus, different community-acquired strains vary in their virulence.  The difference 

amongst strains in pathogenic potential is linked to increased expression of core genome-

encoded virulence genes (176).  It was hypothesized by Li et al. (176) that global 

regulators of virulence genes are responsible for variable virulence amongst strains. 

Similarly, commensal Neisseria have an extensive repertoire of virulence alleles that are 

also expressed by pathogenic Neisseria and other bacterial genera (184). Thus differential 

regulation of these alleles, rather than their presence or absence, may contribute to 

increased virulence in the pathogenic Neisseria.  Perhaps MpeR-dependent activation of 

fetA and other potential transporters enhances virulence in pathogenic Neisseriae relative 

to the commensals. 

In conclusion, in this study we demonstrated that MpeR, a pathogen-specific regulator in 

N. gonorrhoeae enhances expression of the siderophore receptor FetA under iron-deplete 

conditions. Up-regulation of  fetA by MpeR was by a direct mechanism.  A second, 

internal transcriptional start site was identified upstream of fetB, positioned near several 

potential -10 promoter elements, overlapped by the Fur-binding site. Additional studies 
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will be required, however, to fully define the mechanisms that control fetB transcription 

and whether other regulatory proteins are involved. We also determined that enterobactin, 

D2, D3 as well as salmochelin S2 were utilized in a FetA- and TonB-dependent 

mechanism in strain FA1090. Expression of MpeR enhanced the ability of strain FA1090 

to utilize enterobactin and salmochelin, consistent with MpeR-dependent activation of 

FetA. Gonococcal strain FA1090 was also capable of utilization of the DHBS monomer, 

but did so in a TonB- FetA-independent manner. We identified one possible mechanism 

that may elucidate why gonococcal strain FA19 exhibits Ton-independent 

xenosiderophore acquisition.  None of the catecholates that supported growth in this 

study appeared to act as a co-inducer for MpeR-dependent activation of fetA.  To our 

knowledge, this study represents the first description of a pathogen-specific regulator in 

N. gonorrhoeae that activates expression of a pan-Neisseria TonB-dependent transporter. 

In addition, the current study is the first to link regulation of iron transport and 

antimicrobial efflux systems through the action of a pathogenic Neisseria-specific 

regulator. 
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CHAPTER 6 DISCUSSION 

 

Neisseria gonorrhoeae is a well adapted human pathogen.  Multiple TonB-

dependent and TonB-independent iron acquisition systems have been characterized 

including those involved in iron acquisition from transferrin (63, 64), lactoferrin (22, 25), 

hemoglobin (53), xenosiderophores (43, 273) and intracellular iron (113, 317). All of the 

TonB-dependent receptors are regulated by the ferric uptake regulator Fur to prevent iron 

overload within the bacteria.  

The overall goal of this study was to identify additional iron sources utilized by 

Neisseria gonorrhoeae and characterize the regulation of the receptors specific to these 

iron sources.  This would provide valuable insight into the pathogenesis of the 

microorganism and could also lead to new therapeutic targets.  Understanding the 

mechanism of iron acquisition within the intracellular environment gives us insight into 

gonococcal intracellular survival.  Currently, the precise intracellular localization of 

Neisseria gonorrhoeae is unknown.  Investigating potential intracellular iron sources 

such as iron derived from degraded ferritin or a putative mammalian siderophore could 

further our understanding of gonococcal localization within the cervical epithelial cells. 

Ferritin is an iron binding protein ubiquitous in the human host. It is found intracellular, 

in the cytosol, as well as in the nucleus, in endo-lysosomal compartments and in the 
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mitochondria (120) of the epithelial cells. Extracellular ferritin is found in fluids such as 

serum and synovial and cerebrospinal fluids (120).  In our study we determined that the 

addition of ascorbate to cells incubated in cell culture media inhibited intracellular 

survival.  Ascorbate inhibits ferritin degradation which could be the major source of iron 

for intracellular gonococci. TdfF, a TonB-dependent transporter is crucial for intracellular 

survival, and the tdfF mutant strain was rescued during gentamicin protection assays with 

the addition of iron (113). This indicates that TdfF is important for intracellular iron 

acquisition (113).  One hypothesis is that TdfF is a receptor for an iron carrying molecule 

involved in the transport of iron from degraded ferritin to other parts of the epithelial 

cells.  Ascorbate also binds iron and the attenuated intracellular survival observed could 

be due to the ascorbate sequestering any iron that gonococci acquire within the epithelial 

cell.  We cannot conclude that N. gonorrhoeae utilize iron directly from degraded ferritin 

until we investigate ferritin levels within an infected epithelial cell.  We also investigated 

gonococcal growth in the presence of 2,5-DHBA which is the binding moiety identified 

for a putative mammalian siderophore (75). Enterobactin, aerobactin and 

dihydroxybenzoylserine are xenosiderophores utilized by N. gonorrhoeae (43, 273, 303). 

When we performed plate bioassays in which ferrated 2,5-DHBA was the only iron 

source available, we observed intermediate growth of gonococci  compared to growth in 

the presence of utilizable iron sources. The intermediate growth observed occurred in a 

TonB-, TdfF- independent manner. These results do not rule out the structurally complete 

mammalian siderophore as a possible iron source for gonococcal strain FA1090 nor that 

utilization of this siderophore could be TonB- and/or TdfF-dependent.  Once the structure 
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of the siderophore is elucidated we could test gonococcal iron utilization from this 

mammalian siderophore.   

 Furthermore, understanding how tdfF expression is induced could lead to an 

understanding of the regulation of virulence genes specific to the intracellular 

environment. From previous studies we understand that tdfF expression was only 

observed in the presence of epithelial cells or within cell culture media in the absence of 

additional iron (113).  In this study we determined that the heat-inactivated fetal bovine 

serum component of cell culture media was an iron-depleted media that could contain an 

inducing molecule responsible for tdfF expression.  These observations indicate that tdfF 

expression only occurs in the presence of a host specific signal under iron-deplete 

conditions.  We also determined that tdfF is identical in all gonococcal strains sequenced 

to date. This leads us to the conclusion that TdfF is either not surface exposed or the 

protein is only expressed inside the epithelial cell and away from the pressures of the 

immune system. TdfF could also not be very immunogenic which could explain our 

difficulty in detecting TdfF expression through western blot analysis. We hypothesize 

that MpeR, an AraC-like regulator involved in the regulation of hydrophobic agent efflux 

pumps (92) and the xenosiderophore receptor fetA could also play a role in tdfF 

expression.  The gene encoding mpeR is in very close proximity to tdfF on the 

gonococcal chromosome and the locus of the gonococcal chromosome from tdfF to mpeR 

is conserved only in pathogenic Neisseria species (184, 266).  Additionally, mpeR itself is 

iron regulated and directly activates the xenosiderophore acquisition system by FetA as 

demonstrated in this study. AraC-like regulators are identified due to their homology to 

AraC, which regulates arabinose metabolism and transport in E. coli.  In E. coli, AraC 
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plays a dual role as both an activator and a repressor in this system based on the 

availability of the co-inducing molecule, arabinose.  MpeR could also be a dual regulator 

which activates or represses based on the availability of a co-inducing molecule. For 

example, a specific inducing signal for intracellular invasion could make MpeR, activate 

or derepresses tdfF expression. When gonococci are in the extracellular environment, 

MpeR might no longer bind to this intracellular environment specific co-inducer and 

activates the extracellular iron acquisition system, FetA while repressing TdfF.  The 

opposite could be true such that in the extracellular environment an unknown co-inducing 

molecule could bind to MpeR, activating fetA and repressing tdfF expression.  The co-

inducing molecule for MpeR activation of iron acquisition or efflux pumps has not been 

elucidated and we tested various xenosiderophores, as well as human specific molecules 

such as norepinephrine, epinephrine and ferritin. Since we have determined that MpeR is 

involved in the regulation of xenosiderophore uptake and it has already been 

demonstrated to regulate efflux pumps, MpeR could be a global regulator. If MpeR is a 

global regulator then the inducing signal for MpeR activation could be anything.   

FetA and TdfF could also be connected by the ABC transport system encoded by 

the fet operon.  The FetA-independent but iron regulated transcription of the ABC 

transport genes ng2091-2088 suggests that the ABC transport system could be utilized by 

other TonB-dependent transporters, such as TdfF. We defined the transcriptional start site 

for the ABC transport operon; however, the -35 region could not be identified. This 

suggests that this transport system could also be regulated by a transcriptional regulator 

other than Fur. This alternative regulation could be important for the transport of other 

iron sources besides xenosiderophores.  TdfF does not have an associated ABC transport 
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system; however, the iron source utilized by TdfF would need to cross the cytoplasmic 

membrane. Perhaps, both TdfF and this ABC transport system are regulated by the same 

intracellular regulatory cascade.   Both TdfF and FetA have associated periplasmic 

binding proteins (PBPs), and it is possible that the ABC transport system encoded by the 

fet operon recognizes both PBPs. PBPs play an integral role in mediating the transport of 

carbohydrates, amino acids, peptides, metal ions, metal chelate complexes and other 

nutrients across the periplasm from the outer to the inner membrane (58). It has been 

demonstrated that ABC transport systems are inactive until a holo-PBP interacts with the 

transporter (178). We aligned both FetB from the fet operon and the periplasmic binding 

protein encoded downstream of tdfF, NG0023 also annotated FetB2 and found that they 

were 44% identical.  We also used the SWISS-MODEL program (11) which is an 

automated protein structure homology-modeling server to determine structural 

similarities between FetB and NG0023. We used the amino acid sequence for the PBPs 

from gonococcal strain FA1090. The SWISS-MODEL program selected Yclq, a Bacillus 

subtilis PBP as the biological template structure for the topology model for both 

gonococcal PBPs. Yclq is the PBP responsible for the transport of the siderophore 

petrobactin in B. subtilis (313). FetB had a sequence identity of 35.4 % to Yclq and 

NG0023 had a sequence identity of 32.5% to Yclq. The results of the models reveal that 

the PBP structures were almost identical (Figure 26).  
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  Figure 27. PBP topology models  Ribbon diagrams of PBPs generated using the 
SWISS-MODEL program (11) which is an automated protein structure homology-
modeling server. The amino acid sequence from gonococcal strain FA1090 was used to 
generate the topology models. Yclq, a B. subtilis PBP was used as the biological template 
for both FetB and NG0023.  FbpA has been crystallized in Neisseria. Protein secondary 
structures are indicated by color: β-sheets in yellow, α-helices in magenta and turns in 
blue.  Three dimensional models of FetB (A), NG0023 (B) and FbpA (C) were 
synthesized.   
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FbpA, the PBP associated with the transferrin and lactoferrin iron acquisition system 

(54), has a very different structure compared to NG0023 and FetB (Figure 25).  FbpA 

shuttles iron across the periplasm to the ABC transport system, FbpBC. The interaction 

between the PBP and its ABC transporter is mediated by charge-charge interactions 

formed by surface exposed acidic residues on the PBP and basic residues found on the 

periplasmic face of the transmembrane domains of the ABC transporter (132, 136). Since 

FetB and NG0023 are nearly identical in structure, the acidic residues on the surface of 

both PBPs could interact with the ABC system coded by the fet operon  in a similar 

manner. Both FetB and NG0023 have structures that would classify them in the class III 

of PBPS.  Class III is a large family of proteins with low sequence homology but similar 

overall 3D structures.  Other PBPS that are in this class include PBPs responsible for 

transport of catecholate siderophopres (58).  FbpA belongs to Class II which binds to a 

large variety of substrates including ferric and ferrous iron. Therefore it is plausible that 

both FetB and NG0023 periplasmic binding proteins deliver their specific ligand to the 

same ABC transport system.   The nearly identical structure amongst PBPs could also 

signify that both bind to a similar ligand. The ABC system coded by the fet operon is 

responsible for xenosiderophore acquisition from enterobactin, enterobactin derivatives 

and salmochelin. If the structural similarity between the PBPs indicates similar ligands, 

then NG0023 would be responsible for the transport of a catecholate siderophore-like 

molecule like the recently identified mammalian siderophore.   

Prevention as well as treatment of gonococcal disease is a critical global health 

concern.  Antibiotic resistance prevails and gonococcal infection increases the 

transmission of HIV. Presented in these studies is the investigation of potential 
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intracellular iron sources utilized by N. gonorrhoeae strain FA1090 as well as 

extracellular iron sources produced by commensal bacteria in the female genital tract.  

Understanding xenosiderophore utilization can lead to alternative therapeutic strategies 

for the treatment of gonorrhea.  In this study, we determined that gonococcal strain 

FA1090 utilizes enterobactin and its breakdown product derivatives as well as 

salmochelin in a FetA and Ton-dependent and independent manner.  Previous studies 

have indicated the xenosiderophore utilization occurs in Ton-independent, Fbp-dependent 

manner for strain FA19 (273).  We have determined that the difference in 

xenosiderophore utilization between these strains is likely due to a mutation in the ABC 

transport system encoded by the fet operon. However, despite the mechanism of 

xenosiderophore utilization, understanding which xenosiderophores are utilized by 

gonococci can allow us to exploit the nutrient acquisition pathway for new therapeutic 

strategies.   

Siderophores or analogs can be used as iron transport–mediated drug delivery or 

“Trojan Horse” antibiotics.  Siderophore-mediated drug transport in bacteria and fungi 

have been demonstrated in both the laboratory and in nature.  Sideromycins are naturally 

occurring Fe3+-siderophores that are covalently linked to an antibiotic moiety. Only a few 

naturally occurring sideromycins have been found, among them albomycin and salmycin 

(121). A wide spectrum of siderophore–antibiotic conjugates has been chemically 

synthesized. Although the antibiotic moieties account for a substantial part of the 

sideromycins and drastically change the shape of the siderophore from which they are 

derived, the sideromycins are nevertheless recognized and transported by the Fe3+-

siderophore transport proteins (232).  
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For many antibiotics, the diffusion rate across the cell membranes into the 

cytoplasm is poor. This is frequently a problem in antibiotic therapy for Gram negative 

bacteria since the outer membrane reduces permeation to such an extent that the minimal 

inhibitory concentration required reaches toxic levels (36). In contrast, for sideromycins, 

the outer membranes and the cytoplasmic membranes do not serve as permeability 

barriers, but rather actively contribute to the entry of the antibiotics to their targets in the 

cytoplasm. Active transport reduces the minimal inhibitory concentrations more than a 

100-fold (36). Thus, understanding how xenosiderophores are acquired could help in the 

design of siderophore-antibiotic conjugates that could be applied for the specific 

gonococcal infection.  The challenge with using a siderophore-antibiotic conjugate is that 

the siderophore used needs to be specific to the pathogen and not affect commensal 

bacteria of the genital tract.   We could also use this technology for the ligand specific to 

TdfF.  If this specific ligand is permeable across the epithelial cells, such as the 

mammalian siderophore, then we could specifically target intracellular gonococci.  

Therefore, identifying specific iron sources within the host and how they are acquired by 

gonococci can lead to innovative therapies and a better understanding of the pathogenesis 

of the microorganism.  
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